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Festenberg's observations of anomalously large damping of long-wavelength volume
plasmons in a polycrystalline metal appear to be understandable in terms of plasmon
scattering on the space-varying structure of the metal. A quantitative theory of this pro-
cess involving the assumption of a random model for the structural configuration of the
medium seems to describe the measurements satisfactorily.

Festenberg' has carried out a series of ele-
gant measurements of the half-width b, F. of vol-
ume-plasmon energy losses by 50-keV electrons
in polycrystalline foils of aluminum metal. The
experiments were done for various known angu-
lar deflections 0 of the fast electron and for foils
composed of various crystallite sizes. He found
that when foils are used for which the crystallite

0
dimensions are &250 A, the values for AE vs 0

are described quite well by the free-electron-
gas theory of Ninham, Powell, and Swanson'; a
constant must be added to their theoretical damp-
ing values to account for Drude-type processes
involving thermal effects, disorder, interband
effects, etc. When crystallites of smaller dimen-
sions were involved, a strongly augmented damp-
ing was observed in the region of small angular
deflections (0~1 mrad). This contribution de-
creases monotonically to zero at a rather steep
rate as 0 increases, beginning at a value for L9

=0 which may be several times larger than the
comparable damping in a foil composed of large
crystallites. This grain-size-dependent damp-
ing seems to be unexplained to date.

A possible explanation of this phenomenon is
presented herewith. One argues that a polycrys-
talline metal may be regarded as a random as-
semblage of crystallites in electrical contact
over portions of their surfaces, but separated by
regions having electronic composition different
from that of the bulk metal. The interstices may
be vacant or partially filled with smaller aggre-
gates of matter. In a homogeneous isotropic
electron gas the momentum of a plasmon is a
constant of the motion. By contrast, if the sys-
tem is weakly inhomogeneous the plasmon may
scatter elastically on inhomogeneities from an
initial state of given momentum to any of a large
number of states of different momenta on the en-

ergy shell. This scattering should evince itself
as lifetime broadening of a plasmon state creat-
ed by a fast electron. We suggest that plasmon
damping in polycrystalline media may be due in
part to such scattering processes.

It is convenient to assume that the density inho-
mogeneities are weak and strictly random in
character. We set the electron density at r,
n(r) =n 0+5 (nr), where I5n(r)(/no « l. Using this
model, we give below an expression for the aug-
mented volume-plasmon. damping rate.

Note that elastic scattering of normal surface
plasmons on static electron density fluctuations
is known to occur in thin planar metallic plas-
mas. Relevant experimental data were first ob-
tained by Brambring and Haether ' and a suc-
cessful interpretation on the basis of elastic scat-
tering on surface roughness was proposed by
Stern. ' Wilems and one of us' have applied a
quantum-hydrodynamical theory to this process
with results equivalent to those of Stern. They
suggested that volume inhomogeneities might be
responsible for such interactions, as well as for
interactions between photons and tangential sur-
face plasmons. '

In the quantum-hydrodynamical model of a
weakly inhomogeneous plasma system' the inter-
action of plasmons through static density varia-
tions (SDV) is described by the Hamiltonian H'
= 2m* n, fd'nf (r)v, p', where 0, is the velocity
operator for the bulk-plasmon field in a uniform
isotropic electron gas of density n„ f(r) =6n(r)/
n„and m* is the effective electron mass. ' If
b~~ is the creation operator for a plasmon of
wave vector q, one may write

vop = . ( ~)2 ~ Ve (bq +t'-q )~mw ~q

where q =Q/ ~q~, and vv = [&a~'+ —,'v„'q']'~' is the



VOLUME 24, NUMBER 20 PHYSI CAI. REVIEW LETTERS 18 MwY 1970

frequency of a volume plasmon with wave vector
Also, a&&2 =4nn, e2/m*, and v„ is the Fermi

speed of the electron gas.
Computing the damping rate y of a plasmon in

an initial state characterized by wave vector q,
due to elastic scattering on SDV by applying first-
order perturbation theory and summing over pos-
sible final states characterized by wave vector
q&, we find

where fp -=fd're'"'f(r). Note that ~fp~' is re-
lated to the x-ray scattering factor for the mate-
rial under consideration. Performing an ensem-
ble average, we may write 0 '(~f-„~')=(f')G(Q),
where (f') is the mean squa, re SDV averaged
over the whole system, and G(q) is the Fourier-
transformed autocorrelation function. To simpli-
fy the analytical work, we use an isotropic Gaus-
sian autocorrelation function'; then G(g) = m'~'o'

& e 'q ', where o is an autocorrelation length.
Summing over final states on the energy shell
we obtain

(2)

whereg(x)=— x '[(2-2x'+x')-(2+2x'+x')e ' ].
This result may also be obtained by generaliz-

ing a formula derived by Ferrell" for the damp-
ing of a (zero-momentum) electromagnetic wave
in an electron gas containing an assembly of
weak scattering centers. To compare the two
models, we suppose that the ionic system of the
polycrystalline material may be described by an
ionic pseudopotential distribution 'U(r) ='U, (r)
+ N3(r), where 'U, (r) is the distribution for a
monocrystal of aluminum, and (~5'U(r)~)/('U, (r))
«1, where the indicated averages are under-
stood to be carried out over regions with dimen-
sion large compared with the average lattice
spacing. We imagine that a plasmon propagating
in the medium gives rise to an electric field
R('P, t) =p, E,cos(g, r-cuq t). In the steady state
this oscillatory electric field corresponds to
harmonic motion of all electrons in the electron
gas about their undisturbed positions. In this
model the amplitude of the displacement vector
at (r, t) is $(r, t) =(e/m*uq 2)f(r, t). The rate of
energy loss from the plasmon field due to the
motion of the electron gas relative to the posi-
tive ions may be computed from a semiclassical
dielectric approach. " Dividing by QEo'/8w, the

average energy residing in the plasmon field, we
find the damping rate to be

xlq (3)

(4)

This formula shows a contribution from single-
particle damping processes" and a contribution
which comes from plasmon creation; only the
latter is to be compared with the quantum-hydro-
dynamical result given above. To make the corn-
parison complete, we may set Im(-I/eq )
=-,'(w~~)5(~-&uq) in the region (&uq/&u~-I) « I; the
latter restriction is implicit in the hydrodynam-
ical treatment. With these substitutions Eq. (4)
reduces to Eq. (1).

In Fig. 1 we compare the increase in damping
rate due to crystallite size from Festenberg's
data with the predictions of Eq. (2) above, both as
a function of the angle I9. The experimental data
were obtained from Fig. 5 of Ref. 2 and repre-
sent the difference in the damping half-width be-
tween Festenberg's solid points, obtained for
nominally 70-A crystallite size, and the open
circles representing the energy half-width appro-
priate to large crystallites. These differences
are plotted as the solid circles in Fig. 1. The
solid theoretical curve is normalized to the point
at 0 =0 and is obtained by taking go = [(wz/v)'
+ (k&)']'~', where v is the velocity of the 50-keV

where q=go-qu and 'U~ = fd're q'' 'U(r). Note
that if we set o, (cuq ) =y/&uq and let q, -0, ~q-e„e'U--'U-O, we obtain Ferrell's equation
for the transverse conductivity of the system.
The Lindhard dielectric constant is devoted by

In Eq. (3) we may put 'Uq ='U, -+ O'U,
where q'O'Uq is the Fourier-transformed ionic-
charge-density fluctuation function. This quanti-
ty, when averaged over distances large com-
pared with the Thomas-Fermi screening length
but small compared with the grain sizes, may be
set equal to 4wen, f~, which in turn is proportion-
al to the electron-density fluctuation function.
Ensemble averaging and neglecting the term in-
volving 'Upqp since we are not interested here in
processes occurring in large crystals, we find
the damping rate due to the po1ycrystalline struc-
ture to be
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FIG. 1. Augmented plasmon damping width due to
the polycrystalline structure of aluminum metal. The
points were taken from Festenberg's data (Ref. 2,
Fig.5), The smooth curve was calculated from Eq. (2).

that composite scattering processes would give
a damping curve so strongly peaked in the region
6I-0. Another possibility is that the first-order
perturbation theory used here is not sufficient to
describe accurately the plasmon scattering pro-
cess. Work is under way to extend the present
theory to second order.

We note that Festenberg's technique may be
quite useful in studying the long-range electronic
structure of polycrystalline metals as well as
that of other condensed matter. The volume plas-
mon may be a potentially valuable diagnostic
probe of certain kinds of matter in a sense com-
parable with the x ray and the fast electron.

Correspondence with Dr. Festenberg is grate-
fully acknowledged. In addition, conversations
with Dr. H. W. Hendricks and Professor H. Haeth-
er were very helpful in the present connection.

electron and k is its wave number.
This fit was obtained by taking a =210 A which

is three times as large as the crystallite size d
inferred by Festenberg for this material. He ob-
tained d from angular width b, 8 of the (ill) inter-
ference fringes by setting d =&„/&(), where &„
is the wavelength of the primary electron. It
does not seem possible to rnatch the steep de-
crease of the experimental values in the region
0-0-0.5 mrad by setting 0'=d. Some of the dis-
crepancy may be due to the fact that the uncer-
tainty in the points obtained from Festenberg's
data increases with ~, since one works with
small differences between damping values, each
of which is subject to experimental uncertainty,
when 6I~1 mrad.

Augmented damping at small 6I could occur
through compound scattering processes involving
elastic scatter of the fast electron on the poly-
crystallite structure plus inelastic encounters re-
sulting in plasmon excitation; the composite pro-
cess might involve two fairly large-angle scat-
ters (several milliradians each) such that the in-
trinsic lifetime of the plasmon generated is large
but the net angular deflection after the double
scattering is small. Such processes do not ap-
pear to be important in Festenberg's experi-
ments. " In any case it seems rather unlikely
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