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Using Green’s function techniques we calculate the spectrum for two optic phonons in-
teracting via anharmonic coupling to two acoustic phonons. The single-phonon density of
states, which is related to the first-order Raman spectrum, exhibits a zero (antireso-
nance) between the individual phonon peaks and yields a line shape in excellent agreement
with Scott’s recent experimental results for A1POy.

Quite recent experimental results® for the first-
order Raman spectrum of AIPO, have exhibited
rather anomalous features in the line shapes as-
sociated with optic phonons of the same symme-
try. As the temperature is increased the position
of the broad peak corresponding to an unstable
optic-mode phonon decreases in energy until it is
nearly degenerate with another optic phonon which
is quite stable. The observed spectrum displays
a zero amplitude at an energy between the two
optic-phonon energies; however, the position of
the zero remains very close to the narrow (sta-
ble-phonon) peak. Thus, as the temperature is
varied, and the two peaks move close together in
energy, the line shape is strongly deformed.’

In the present Letter we interpret the above
phenomena in terms of the indirect coupling be-
tween two optic phonons which is mediated by two
acoustic phonons. This interaction can be readily
treated by using the Green’s function formalism
and including explicitly the anharmonic terms in
the phonon Hamiltonian.

We begin by considering the Hamiltonian

= 75 Hpar P £3Cp, 2 +3C,, (1)
a =ab
where 3, ™ refers to the harmonic Hamilton-
ian for each of the two optic branches labeled by
a and b, respectively, i.e.,

Honar P = pwe PR [07a Dra + 5] (2)

In Eq. (2) the phonon creation and destruction op-
erators are denoted by braT and by,, respective-
ly, and the optic-mode energy is given by w°P(k).
A similar definition holds for JC,.2°, which rep-
resents the harmonic contribution of the acoustic
phonons.

The anharmonic term ¥, contains combinations
of three phonon operators and is responsible for
two distinct physical effects:

(a) This term contributes to the finite lifetime
of the optic phonons due to the possible decay of
a single optic phonon into two acoustic phonons.
The lifetime, and therefore the strength of the

JC, coupling, can be estimated from the optic-
phonon broadening observed experimentally.

(b) The ¢, term provides an indirect coupling
between two optic phonons via the anharmonic in-
teraction of each optic phonon with two acoustic
phonons. The latter coupling process forms the
basis for the present study.

For the third-order term ¥, we consider a
model Hamiltonian of the form?

Ko T gaV V(0SB T, (3)
o =g

where the ®(x) are the usual phonon-field opera-
tors® given by

&(x) = V™ D [w(® /2]/2{p e 17 ¥
+bple ~ilkex=wlony.  (g)

V denotes the crystal volume. Since we are con-
cerned with the first-order Raman spectrum, we
need to consider phonons with momentum k =0,
Therefore, for the case under consideration, it
is a good approximation to neglect the momentum
dependence of the anharmonic coupling coefficient
8q. We have made this assumption in writing the
anharmonic term in the form given in Eq. (3).*
The fourth-order anharmonic terms in the
Hamiltonian will renormalize the single-phonon
energies and, on the other hand, contribute to
indirect phonon coupling mediated by three other
phonons. These, and higher order, processes
can be treated by an extension of the theory and
will modify the values of the parameters which
appear in the final results of the present work.
The strength of the first-order Raman scatter-
ing is determined by the phonon correlation func-
tion ([A®, °P(x) + B&°P(x) A2, P(x’) + B&,°P(x") ),
where A and B are related to the Raman activity
of the respective phonon modes.® Since the
thermal energies attainable experimentally are
negligible compared with the phonon energies
under consideration, we employ the Green’s func-
tion formalism for zero temperature. Effects of
finite temperature, such as the softening of the
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unstable optic-mode phonon, will henceforth be
taken into account by considering the renormal-
ized optic energies wo°(k) and coupling coeffi-
cients g, as temperature-dependent parameters.
In this case the spectral function corresponding

to the above correlation function can be expressed

in terms of the zero-temperature Green’s func-
tion:

DBt - _i(T{(A®,% +B&,°P)
X(A®,°? + B g°P)}), (5)

where T denotes the time-ordering operator.
Then the intensity of the Raman scattering can
be related to to the spectral function

p48 () = _ImD B} (= 0, w). (6)

In terms of the individual phonon Green’s func-
tions

Dy ®Plx—x") = —T{2, P(x) @ sP(x ")}, ("
the spectral function takes the form
pA4BH (W) = —Im[A2D,,°P + AB(D 4% +D 4,°P)
+B°D ). (8

In order to calculate the effects of the anhar-
monic coupling on the spectral function we con-

sider the infinite set of diagrams shown in Fig. 1.

These diagrams demonstrate the indirect optic-
phonon coupling mediated by the anharmonic in-
teraction with two acoustic phonons. The bare
two-acoustic-phonon Green’s function D L0k
—k w), represented by the solid bubbles in Fig.
1, has been previously calculated.? For the
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FIG. 1. Diagrammatic representation for the single-
optic-phonon propagator Dyg®Pincluding the indirect in-
teraction of optic phonons (dotted lines) via anharmonic
coupling to two acoustic phonons. Solid bubbles desig-
nate the two-acoustic-phonon Green’s function. The
interactions are considered in the random phase ap-
proximation.

case when the optic-phonon energies fall inside
(but not too close to the top of) the two-acoustic-
phonon continuum, the two-phonon Green’s func-
tion can be considered as purely imaginary, and
can be expressed as®

Dz(o)ac(ﬁ ~ 0’ w) = iQ(w‘), (9)

where { is a smooth function of energy. The
above approximations in the calculation of the
acoustic-phonon Green’s function neglect struc-
ture near the top of the acoustic spectrum which
is associated with two-phonon resonances.? In
situations where the optic-phonon energies are
nearly degenerate with such resonances, hybrid-
ization of these phonon states can occur and mod-
ify the spectrum in an essential fashion.?

Turning now to the calculation of the single-
optic-phonon propagator we write the one-parti-
cle Green’s function corresponding to the dia-
grams shown in Fig. 1:

K, w)D g Pk w)

Pk )= (0)op v
DaB (k, w) = GaBDa (k (.O) +8a 88 1- E g 2] (o)aC(K ) w)Dyﬁ)ﬁ)p(k, w) (10)
y=ab
Following the usual notation,® we introduce a propagator for a single phonon,
- k) 1 1
D (O)OP = wa( [ - > . s
ok, @) 2 |lw—wo®) +i6 w+wy(k)-26]" (11)

it should be noted that D,®°P represents an optic phonon with an infinite lifetime.
Broadening of the optic-mode phonons due to the ¥, term is included directly in the Dyson equation
(10). As the separation in energy of the two optic phonons is small in comparison with their sum, we

consider only the first term on the right-hand side of Eq. (11).

we obtain the optic-phonon spectral function,

p{A,B}(w) _ [Aga,Ab +ng'Aa]2

Finally, making use of Egs. (8)-(11),

T 4A,20.2Q(0)0 "L

(w) +[ 270 +£5"0,P Qw)Q @)

(12)

where A, =1-w/w,, Ay =1-w/w,; o' =£.[&)]V? is a dimensionless coupling constant and @ = 5 (w,

+wp). It is apparent from Eq. (12) that the spectrum displays an antiresonance feature; i.e.,
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FIG. 2. Single-optic-phonon spectrum plotted as a
function of energy € for three positions of the unstable—
optic-phonon energy: €,=0.75, 0.65, and 0.62. The
stable optic peak is centered at €, =0.60, and the di-
mensionless anharmonic coupling coefficients were
chosen as g;’ =0.13 and g’ =0.20 for all three curves.
The ratio of the Ramam activities of the two phonons
is taken to be A/B=0.4, and the spectrum amplitude
is displayed in arbitrary units.

vanishes identically at an energy w =(Ag, + Bg, )Y/
(Ag,wp " *+Bg,w, '), which lies between the two
optic energies w, and w,. As long as w, # wy, it
is interesting to note that the antiresonance fea-
ture exists for arbitrary values of the Raman ac-
tivity strengths A and B, and the position of the
zero is independent of the two-acoustic-phonon
propagator.® In Fig. 2, the spectral function is
plotted as a function of energy for various values
of the optic-phonon frequencies. The coupling
coefficients g,’, the energies w,, and the Raman
strength ratio A/B were chosen to produce a
spectrum resembling Scott’s experimental re-
sults for A1PO,.! For convenience, dimension-
less energy parameters €, =w,/w, have been in-
troduced, in terms of an arbitrary scaling energy
w,. In the figure the curve for €, =0.60 and €,
=0.75 aisplays two symmetric peaks associated
with the optic phonons.” Note that the antireso-
nance feature appears quite near the narrow peak
even though the optic phonons are well separated
in energy. As the broad peak shifts to € g=0.65,
corresponding to a temperature increase in the
experiment, the antiresonance feature becomes
quite prominent and distorts the line shape sig-
nificantly. Lastly, when the optic-phonon ener-
gies are quite close (€, =0.60, €;=0.62), the
broad peak is strongly deformed and a rather
sharp antiresonance occurs. These features are
in remarkable agreement with the structure in
the Raman spectrum observed experimentally.®
In conclusion we note that the indirect coupling
of unstable optic phonons may be of special in-
terest in the case of ferroelectric materials. In
these materials an optic-mode phonon shows a

very strong temperature dependence which is
connected with the ferroelectric phase transition.®

We are indeed grateful to Dr. J. F. Scott for
stimulating our interest in this problem and for
valuable discussions regarding the importance
of the possible coupling between two optic pho-
nons.

Note added in proof. —The antiresonance and
associated optical-phonon structure observed in
the Raman spectrum of A1PO, cannot be observed
in reflectivity experiments (both peaks corre-
spond to phonons with A, symmetry which is not
infrared active). In general, however, anhar-
monic phonon coupling can substantially modify
the infrared dispersion as shown by A. S. Barker
and J. J. Hopfield, Phys. Rev. 135, A1732 (1964).
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where the ajs’s are related to the phonon operators by
as = [2ws )] '1/2(bf:ST +bs) with the convention Z=1.
The coupling coefficient g4 can be related to the crys-
tal force constants implicit in & by straightforward
substitution of the field operators (x) into Eq. (3) to
obtain the corresponding expression for 3C;.
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the limit of vanishing acoustic-phonon width I'— 0, the
two-phonon Green’s function becomes

— L 2.1
D V%= —inwp o,

where p; is the single-acoustic-phonon density of
states. For convenience we consider only one acous-
tic-phonon branch. Inclusion of the real part of Dz(o)ac
(with a finite phonon width I') introduces minor modifi-
cations in the structure of the optic-phonon line shape,
but does not affect the validity of our final result for
the position of the antiresonance [Eq. (12)].

"For convenience in computation we have taken QW)
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=Q(@). If the optic-phonon energies are near the top
of the two-acoustic-phonon continuum, the energy de-
pendence of Q(w) cannot be neglected and will induce

an asymmetry in the single-optic~phonon spectrum as
discussed in Ref. 2.
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Chemical shifts of impurity binding energies and g factors are explored within the
framework of a modified effective-mass or wave-packet formalism. Magnitudes of the
shifts are determined from band-defect energies, a crystallographic generalization of
the quantum-defect method for spherical potentials. Good agreement with experiment is

obtained for group-III acceptors in Si and Ge.

The problem of shallow impurity states in
semiconductors has attracted much interest and
has led to the development' of a theory of crys-
tallographic wave packets which is called the ef-
fective-mass approximation (EMA). The formal-
ism gives an exhaustive account of all the effects
of external perturbations (electric, magnetic,
and strain fields) and weak internal hydrogenic
potentials which can be explained in terms of
symmetry properties alone. Notably absent from
the theory so far, however, is any prescription
for explaining chemical trends in ground-state
properties of impurities. In this Letter a simple
Ansatz is introduced which permits exploration
of these trends. The method is applied to group-
Il acceptors X (X=B, Al, Ga, In, Tl) in Si and
Ge and is used to discuss chemical trends in
ground-state ionization energies E,*(X) and g
factors g(X).

Our model for the impurity potential is the fol-
lowing. Construct a unit cell of volume Q= ta?
centered on the impurity, where « is the cubic
lattice constant. Outside this unit cell the effec-
tive-mass Hamiltonian has the form

Hyy =T—€%/er +AL -, (1)

out

where T is the kinetic energy operator, ¢, is the
static electronic dielectric constant, and i is the
spin-orbit coupling parameter. A number of
studies? of microscopic dielectric properties
have shown that ¢, is the appropriate screening
factor to use for 7 in this region.

Inside the unit cell the potential is no longer
sperically symmetric. It can, however, be ex-
panded in tetrahedral harmonics, as has been
done® in various molecular one-center studies of
ZH,, Z=C, Si, Ge, or Sn. Write the potential
inside the unit cell as

Vins (F) = —€* /ey +V,(r) +a(X)xyz + - - - (2)

1114

The term V,(r) represents the breakdown of di-
electric screening in the central cell, an effect
which is almost isotropic? and independent of X.
The term of tetrahedral symmetry xyz repre-
sents the lowest-order contribution of the near-
est-neighbor potentials. The presence of the im-
purity will also produce a local strain field of
quadrupole symmetry which we represent by

Wr)=7-S-Tb(r), (3)

where S is the strain tensor.

The kinetic energy operator T is not simply
p?/2m, but instead operates in the six-dimension-
al space obtained as the direct product of T,
(which represents the Bloch states at K=0 which
are three-fold orbitally degenerate) and the dou-
ble group D,,. The two terms which make the
largest contribution to 7 are conventionally rep-
resented by’

e P T BT, )
2m E, ’
_ R K P

Hl—Zm E,’ ’

where the appropriate energy denominators have
been given in spectroscopic notation.*

Because T is already anisotropic, it is conven-
ient to treat the effects associated with (3) and
the last term in (2) by making a unitary trans-
formation and absorbing their effects into F and
H,. This cannot be done simply and exactly, but
if we are interested primarily in the direction of
chemical trends and their approximate magni-
tude, such an approach offers several advantages.
The dominant terms should again be associated
with interactions between I',., and the lowest ex-
cited states I',, and T';,. We therefore replace
the complicated Hamiltonian containing (3) and



