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between the data and the Glauber theory in the re-
gion of large angles where the basic theoretical
assumptions may not hold and the formal exten-
sion which we made for computing it is difficult
to justify. We are currently completing experi-
ments at 2.2 and 7.9 GeV/c designed to provide
data with much higher statistics both at large
scattering angles and in the interesting region at
the break in do/dt. A more detailed calculation
is being done to include multiple-scattering ef-
fects neglected in the present work.
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rington.
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OBSERVATION OF REGGE EFFECTS IN THE REACTION 7°p - n°A™
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We report a measurement of the total and differential cross sections and A**-decay
angular distributions for the reaction 7*p —nA** at incident momenta between 2.67 and
4,08 GeV/c. A dip near ¢t =-—0.5 and a backward peak are clearly observed. In a Regge-
pole exchange model we determine the parameters of the p trajectory.

The Regge-pole model is most easily tested in
reactions in which only a single trajectory can
be exchanged in the ¢ channel. The success of
the p-trajectory model in describing the 7 7p
charge-exchange reaction'’ makes it important to
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see if the same trajectory also describes other
reactions dominated by p exchange. The reaction
mp - 7A is the only other such example. The dip
observed near ¢{=-0.5 in the differential cross
section for the 7 " p charge-exchange reaction



VOLUME 23, NUMBER 17

PHYSICAL REVIEW LETTERS

27 OCTOBER 1969

has been interpreted as evidence that the p tra-
jectory passes through zero at this point, and so
we expect to observe the same dip in the 7A final
state if the same trajectory is exchanged.?

We report here a study of the final state® 7°A*"
as observed in the reaction

Ttp 1t pud, (1)

An exposure of the 72-in. hydrogen bubble cham-
ber to a separated 7* beam at the Bevatron
yielded 96 000 two-prong events distributed
among the five incident momenta 2.95, 3.20,
3.53, 3.74, and 4.08 GeV/c. A similar exposure
of the 25-in. bubble chamber has yielded to date
45000 two-prong events at 2.67 GeV/c.* The
events were measured on the flying-spot digitiz-
er (FSD) and constrained to hypothesis (1). Ex-
tensive use was made of the automatic ionization
measurements available from the FSD?® in order
to discriminate against conflicting hypotheses.

A major problem in the 3- to 4-GeV/c experi-
ment was the proton contamination in the beam,
which varied from 3 to 10% for most of the film
but was 22 % for 4.08-GeV/c exposure. This is
a particularly severe problem in the small-mo-
mentum-transfer region, where the process pp
-nA™ is difficult to distinguish from the pro-
cess m*p - m°A™ with the usual kinematic con-
straint and ionization method.® The former pro-
cess has a cross section approximately 15 times
the latter in our energy range, making even a
small beam proton contamination manifest. How-
ever, the mass difference between the 7 and p
produces an upward shift in the missing mass
when a real proton event is treated as a pion
event. By measuring small samples of film with
incident protons at 2,95, 3.65, and 4.0 GeV/c
and treating pp ~nA™ events as 7' p - 1°A™
events, we have determined the cuts on the miss-
ing mass squared required to remove incident-
proton events.” The 2.67-GeV/c film was taken
with a beam proton contamination of less than
0.5 %.

Examination of the Dalitz plot for Reaction (1)
shows that this final state is dominated by the
reactions

T =A™, (2)

T*p~p"p, (3)
and

Tp~mtAT, (4)

If one evaluates the 7 7° invariant-mass squared
from Reaction (1) in the A™ rest frame, one

finds that there is a linear relationship between
the mass squared and the cosine of the angle
that the decay proton makes with the A*™* line of
flight. The distribution of this decay angle is
such that Reaction (3) overlaps Reaction (2) in a
region of angles lying entirely in the forward
hemisphere. This allows us to use the method
of Eberhard and Pripstein® to remove the over-
lap events and repopulate the sample with events
from the corresponding part of the backward de-
cay hemisphere. These repopulated events rep-
resent 159% of our sample [with a p-band cut of
0.64 <M(nm) <0.90] at 3-4 GeV/c, and 30% of our
sample at 2.67 GeV/c.® The peripheral nature
of the production process (3) reflects itself as
very small momentum transfers to the A, so
that the removal of these overlap events is es-
sential for studying Reaction (2). The A" band
is defined by the mass interval 1.12<M(7%p)
<1,32.

We then present results for 385 events between
3 and 4 GeV/c and 420 events at 2.67 GeV/c.
The Dalitz-plot projections show less than 10%
background for most production angles. This
may be somewhat higher in the backward hemi-
sphere where small signals make background
estimates difficult. The cross section for Re-
action (2) is presented in Fig. 1 together with
some previous measurements from the litera-
ture.’® We note the power-law behavior with in-
cident pion momentum; a fit to our data and the
8-GeV/c point gives a p ~¢ behavior.

Figure 2(a) shows the differential cross sec-
tion, do/dt, for the two energy regions. A fit
of the forward peak by do/dt=Ae” yields B=8.8

O This expt.

@ Abolins et al

® Bartsch et al.

A Deutschman et al.

V¥ Saclay et al.

Lol

T
!

o

w
T
L
o
1

1 11 11 1
| 2 3 4 56789
Pinc. (G )

FIG. 1. Total cross section as a function of incident
momenta for 77p—m’A**, The solid curve is pj .~ 16
from a fit to this experiment and the 8.0-GeV/c data.
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FIG. 2. (a) do/dt vst at 2.67 and 3-4 GeV/c. The curves are discussed in the text. (b) do/du vs u in the small-
|lu] region. (c) Density matrix elements as a function of £. The curves are discussed in the text.

+1,0 at 2.67 GeV/c and B=8.0+0.9 at 3-4 GeV/c.
The dip near £=-0.5 is clearly observed at both
energies.'! A broad, second minimum near ¢
=-2.5 is observed in the 2.67-GeV/c data. A
backward peak is observed at both energies, and
is shown as a function of « in Fig. 2(b).'?

In the p Regge-pole description the helicity-
flip amplitudes for 7°p —m°A** go as

—imo

1-e
gla)F(s—u, a)ﬁ(ﬂm
[where g(a) ~0 as a ~0] and, for a canonical p
trajectory of 0.5 +£, have zeros at {=-0.5, -2.5,
etc. Thus the minimum at —0.5, and that at -2.5
in the 2.67-GeV/c data, may be taken as evi-
dence for exchange of the p trajectory in this re-
action. This second minimum could be confirmed
by its observation at constant ¢, independent of
incident momentum.

As a representation of the available 7 "p charge-
exchange data, we show a best fit of Barger and
Phillips®® to those data (with a particular Ansatz
for the large-f region), normalized to this ex-
periment [solid curve on Fig. 2(a)]. The simi-
larity of the shapes is evident and suggests that
both processes are dominated by exchange of the
same trajectory.

Krammer and Maor'* have done a simultaneous
fit to the reactions 7*p - A", 7'p -=1°A™, and
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K ~p-K°A™ with a p+A, Regge-pole model; the
fit included our 3- to 4-GeV/c data, so the dashed
curve in Fig. 2(a) shows the predictions of this
model for 2.67 GeV/c only. We have extended
the model past the ¢ region considered valid by
the authors, and in this region the model should
be taken as indicating the dip expected near ¢
=-2.5, rather than as a quantitative prediction.
The spin-density matrix elements in the Jackson
frame for the decay are shown in Fig. 2(c) as a
function of ¢, together with the predictions by
Krammer and Maor. Within the limited statis-
tics the two are consistent, with the possible ex-
ception of p,, near ¢=-0.6 for the 2.67-GeV/c
data. We keep in mind that the predictions of the
M1 dominance model® at the pAp vertex are p,,
=0.373, p3-,=0.216, and pg, =0.

Mathews'® has discussed a linear fit of the
available data with

do [G®)7] (s—u\2*®
P ]iP 2} <—2—> . (5)
lab

As a necessary condition for the use of this equa-
tion the p,; for Reaction (2) at a given ¢ should be
independent of 5.’ Comparison of the p;; at 2.67
and 3-4 GeV/c [Fig. 2(c)] and at 8 GeV/c!” shows
that this condition is at least approximately sat-
isfied experimentally. We have then performed
a least-squares fit by Eq. (5) for | #|< 1.2 GeV/c?
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which gives
a,(f)= (0.56+0.04) +(1.34+0.12)¢,

from 7*p - m°A*, using the 3- to 4- and 8-GeV/c
data, and

a ,(#) =(0.49+0.03) +(0.82+ 0.07)¢,

from 7¥p - 1°A™ using the 2.7-GeV/c data as
well, compared with

@ ,(£)=(0.57+0.01) +(0.91+ 0.06)¢

from 7~p —7%. These results are taken as evi-
dence that the same trajectory is exchanged in
both reactions. The flattening of the trajectory
obtained by including the 2.67-GeV/c data is due
to the steeper low-{ behavior at this momentum,
a possible consequence of an s-channel reso-
nance contribution, as discussed below.

In the 7 7p charge-exchange reaction a polar-
ization has been observed'®—something which is
impossible if only a single trajectory is exchanged.
Many theoretical models have been proposed to
explain this polarization, and we can ask if a
similar phenomenon is present in Reaction (2).
Ringland and Thews’® have proposed a test for
the exchange of a single trajectory which asks if
the contributing amplitudes are relatively real.
The test requires that the combination

Pas P11~ (Repg)®~(Rep; -)*

be zero. A violation of this condition implies the
exchange of more than one trajectory, but satis-
faction gives no information. Figure 3 shows
this sum as a function of momentum transfer for
our data and the 8-GeV/c CERN data.'” This
highest energy indicates a violation at small ¢
which is no longer evident at the other energies.?

We have shown that a {-channel p-exchange
description accounts for most of the features of
Reaction (2). However, we cannot rule out s-
channel resonance or #-channel baryon-exchange
interpretations of some of these features. For
completeness we briefly discuss these interpre-
tations.

The 2.67-GeV/c incident momentum is at the
peak of the I=3, J° =1* A(2420). The locations
in cos6 of the minima and the backward peak are
consistent with 2-wave decay of this resonance
into A7. That the minima from an s-channel
resonance should coincide with those from a -
channel exchange is an expectation of duality.?’
Thus the {-channel and s-channel interpretations
may be equivalent.

The backward peak observed at both energies
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FIG. 3. Test of the Ringland-Thews conditions:
P33P ;—(Reps))*—(Reps_p)? vs ¢ for 2.67, 3-4, and 8 GeV/
c¢. The dashed line at 0.0625 represents the maximum
violation of the condition.

[Fig. 2(b)] can be interpreted as evidence for u-
channel baryon exchange. The ratio of the cross
sections in the backward interval Au=0.2 GeV/c?
between 2.67 and 3-4 GeV/c is approximately
1.8, corresponding to a p ~3 behavior. A fit with
do/du=Ae®" for the interval —0.4 <u <0.2 gives
B=3+1 at both energies. Both this value of B
and p ~3 behavior are consistent with those ob-
served in processes thought to go by baryon ex-
change.?®2% Again, allowing for duality, the u-
channel exchange interpretation may be an equiv-
alent rather than an alternative description.
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G. Eckman. We gratefully acknowledge discus-
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For several Regge trajectories of elementary particles, we exhibit formula fits to the
experimental masses. We find that it may be premature to conclude that even the exist-
ing trajectories form straight lines when the squares of the particle masses are plotted

against the particle spins.

It is widely accepted that the elementary parti-
cles which belong to the same Regge trajectory
lie on a straight line when the squares of the par-
ticle masses M are plotted against the particle
spins J. In this Letter, we point out that this ac-
ceptance is premature, that is, that other simple
formulas describe the masses as well as does a
straight line.

For example, Table I shows fits to the experi-
mental masses® for the three-parameter formu-
las

MJ)=A-B/(c+J)? 1)
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and
M(J)=A-B/(c+J), ()
as well as for the two-parameter straight line
[M(@)]?=A +BdJ. (3)

The parameters listed in Table I are determined
by minimizing x2. We show those Regge trajecto-
ries which presently contain four or more parti-
cles—i.e., N*(3), A(3), p, Y *(2), and Y, *(3).
When the error of an experimental mass is not
available, we assign a value X =10 MeV. Be-
cause of this arbitrary choice, the absolute val-



