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are given by
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Thus it can be seen that while the first bracket
in Eq. (13) varies as L

' for small L, the other
terms involve a ~

' dependence. Formally it
would appear that for small ~ we do have a large
increase in plasma loss over the Pfirsch-SchlQ-
ter result. However, in the expansion procedure,
we have still to determine the mass fluxes exact-
ly. This is done by requiring that the solution in
first order be periodic in 0. Closer examination
reveals that from this we obtain two complicated

yM =E(NVu). (16)

This is in addition to the zeroth-order limitations
imposed on I' and g which were mentioned above.
Equation (16) and the solvability condition (12)
lead directly to restrictions on the components of
flow velocity:

Iv, /c I-fy, (17)

differential equations with respect to r, for I
snd g. The solution of these equations with the
appropriate boundary conditions would enable us
to evaluate W"' exactly. Rather than carry out
this full prescription, we have made the plausible
assumption that the zeroth-order angular momen-
tum through each magnetic surface is zero. Such
an assumption relates M and E:
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where for representative t, z values, (N'Eu)-1.
One further assumption is required before we

can estimate the orders of magnitude of the dif-
ferent terms in expression (13). This concerns
the "smoothness" of the radial variation of quan-
tities. We require that all functions be well be-
haved in the sense that 8A/Sr-A/r is a reason-
able approximation.

With this information it is easy to show that
each of the three brackets in expression (13) is
of the same order of magnitude. In other words
the contributions to plasma loss due to inertia
are, at most, several times the value of the
term describing classical diffusion. ' This result
seems to agree with preliminary calculations in-
volving the numerical integration of the fluid

equations. For representative situations, a to-
tal ylasma loss of approximately five times the
Pfirsch-SchlGter result is found.
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An experimental and theoretical investigation has been made of the absolute instability
that occurs near 2(d~ when two opposing drifting electron beams interpenetrate in a stat-
ic magnetic field. The theory allows determination of the beam temperature by mea-
surement of cutoff magnetic field or cutoff beam velocity. The result of the measure-
ment is that the beam temperature is equal to the cathode temperature and we conclude
that no irreversible change takes place.

It is well known that the Vlasov equation de-
scribes reversible phenomena in a collisionless
plasma and it has been decisively proved by
Malmberg et al. ' by their echo experiment that
under proper experimental conditions the infor-

mation left behind after phase mixing can be re-
covered by application of a second signal. This
implies that the temperature of interacting beams
which give rise to a growing instability should
not change. On the other hand Etievant and Per-
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ulli' and Maxum and Trivelpiece' have investi-
gated the oscillation limits of a counterstream-
ing beam instability in a magnetic field and found
that oscillation ceases when the wavelength is
lowered and approaches the Debye length. On the
assumption that Landau damping sets in when the
wavelength of the instability becomes approxi-
mately equal to the Debye wavelength )(o, they
determine the beam temperature and find it up to
700 times higher than the cathode temperature,
i.e., the beam temperature before interaction.
Maxum and Trivelpiece invoke a "beam therma-
lization" phenomenon involving ions to explain
these results, but we shall show that this is not
necessary. We wish to report on our experimen-
tal and theoretical investigation of the same in-
stability in order to show that the beam temper-
ature remains close to the original cathode tem-
perature. Thus we show that no irreversible in-
crease of the beam temperature occurs and that
this class of phenomena is reversible in the ther-
modynamic sense as long as the mean free path
is long compared with the tube dimensions.

The experimental setup consists of two Pierce-
type electron guns with oxide-coated cathodes
situated at opposite ends of a conducting drift
tube of 6.0 mm internal diameter and 28.0 cm
length. The beams fill the drift tube. A 2.0-mm

gap between each gun anode and the drift tube al-
lows oscillations to be coupled out by suitable
means, e.g. , external resonators. The anode-
cathode separation of each gun is 1.0 cm with a
current-controlling electrode situated between.
The whole setup is sealed off under very good
vacuum in a glass envelope. A longitudinal mag-
netic field is applied. It has been shown, e.g. ,
by Lazarus~ as well as in Refs. 2 and 3 that in-
teractions arise between the fast cyclotron and

slow space-charge modes and occur near half
the cyclotron frequency. We have confirmed ear-
lier observations of the resulting instability and

shown by considerations to be published else-
where that it is an absolute one. Our measure-
ments of the oscillation limits are shown in Fig.
1 where the cutoff beam energy is shown as a
function of magnetic field and beam density.

The theoretical analysis of this bounded sys-
tem is based on a paper by Lichtenberg and Jay-
son' who showed that a good approximation is ob-
tained by endowing the beams with random (Max-
wellian) energy in the direction of propagation
only. The dispersion equation becomes

)( '(p'nv/a2+ p2)-S(') (~) = S(') (~)
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FIG. l. Oscillation cutoff conditions.
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= (v —vp)/pv T„vY,

(,(k) = ((u-v p+ (u.)/pv, „vr,
and v =+

~
v~ for the first beam with k = 1, v = -~ v~

for the second beam with k= 2. p, is the vth

zero of the nth-order Bessel function, a the drift
tube radius, P the propagation constant, v T„ the
beam thermal velocity, A. D the Debye length, and

Z($) the plasma dispersion function. Solutions of
this equation are obtained by plotting the right-
and left-hand sides as a function of real &u (put-
ting imaginary &u equal to zero) near —,~, with the
velocity put equal to the experimentally deter-
mined cutoff velocity, and looking for values of A. n
= (kT/41(ne')'I', i.e., the temperature T for which
intersection of the two curves just occurs. For
this temperature, then, the instability just dis-
appears, whereas for lower temperature there
is no intersection. The roots are complex cor-
responding to an absolute instability. Using this
theory, beam temperature is determined by mea-
surement of the cutoff velocity for constant mag-
netic field. The result of our temperature mea-
surement is that the beam temperature is near
0.1 V over a range of drift energies from 50 to
600 eV. This is exactly the temperature of the
cathodes, thus measurement shows that no tem-
perature rise takes place. Our theory, valid in
bounded geometry, is a radical improvement on
the crude criterion X=~D for cutoff, from which
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FIG. 2. Stability limit variation with beam diameter.
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one would deduce a "thermalization process"
leading to a twenty- to thirtyfold temperature
rise from our data.

To show the improtance of the drift-tube diam-
eter for the theory of our measurement, we re-
produce a curve of the stability limit, i.e., a
curve of beam temperature versus beam diame-
ter for the magnetic field, plasma frequency,
and cutoff beam energy given (Fig. 2). It is seen
that it would take a beam temperature an order
of magnitude higher than that obtained for our
beam diameter of 6.0 mm to obta, in cutoff in a
drift tube with a diameter of 10 cm. The theoret-
ical curve is very sensitive to wave numbers.
We used the wave number calculated by solving
a cubic approximation to the despersion equation
in the interaction region.

We have recalculated the stability limit accord-
ing to our theory for Etievant's parameters.
Figure 3 shows curves of beam temperature ver-
sus cutoff voltage for the parameters of our ex-
periment and for those of Etievant. Damping
sets in at 0.07 eV in ours and at 0.25 eV in Etie-
vant's experiment. It is seen that we deduce a
temperature about 0.3 eV for his case. Since he
used a hot tungsten source, while we used an in-
directly heated Ba-oxide cathode, the higher
temperature should be expected. It is unfortun-
ately not possible to recalculate results from
the experiment of Maxum and Trivelpiece in the
same way, as in their case the geometry is that
of concentric beams which would need a much
more complicated analysis involving Bessel and
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FIG. 3. Experimental stability limits.
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Neumann functions. Their results obtained by
equating the oscillation wavelength to the Debye
length are also shown in Fig. 3.

The details of the cathode and anode gun dimen-
sions, etc. , are irrelevant in connection with the
experiments described. They are, however, rel-
evant in connection with other oscillations which
were also observed, such as transit-time oscil-
lations due to cathode sheaths, etc. We have sat-
isfied ourselves that all the other oscillations ob-
served at different frequencies superpose linear-
ly and do not interact with the instability under
review.
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