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In conclusion, our findings demonstrate that a
trapped particle can maintain phase coherence
for a long time, and its anharmonic orbit can be
responsible for the new echoes observed. It is
possible that "fractional echoes" also occur in

other plasma' and solid-state systems4 but have
escaped detection because the sensitive detectors
of these experiments operating at higher frequen-
cies cannot respond to a wide range of frequen-
cies. Effects of local fields can be precisely
measured by this temporal echo method, in con-
trast to the spatial echo technique' which aver-
ages the effect of fluctuations over a certain dis-
tance. Although the magnetic field does not play
a dominant ro1e in the foregoing experiments on
account of the large ion Larmor radius (p;=0.2

cm), we are presently investigating the effects
of a small Larmor radius (p, = 10XD) on trapped
particle orbits. Our experiments suggest inves-
tigations of particles trapped inside magnetic in-
homogeneities or in strong electromagnetic
fields. ' The present experimental arrangement
is probably the simplest in which echoes can be
observed, requiring no stringent restrictions on
either magnetic field or density inhomogeneities.
The long echo lifetime of approximately 1 rnsec
permits observation of both low- and high-fre-
quency fluctuations. The simple new ion probe
technique, which is capable of rather precise
measurements, should find interesting applica-

tions in space and laboratory plasmas.
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EFFECT OF INERTIA ON LOSSES FROM A PLASMA IN TOROIDAL EQUILIBRIUM
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We investigate the magnetohydrodynamic equilibrium of a resistive, low-density plas-
ma in a model stellarator field. The effect of inertia on plasma motion is treated exact-
ly, and its influence on plasma loss determined. It is shown that the losses due to iner-
tia are limited by the conditions for the existence of an equilibrium.

The plasma loss rate from a, low-density resis-
tive plasma in a torus has previously been calcu-
lated" neglecting finite plasma inertia. In other
papers'4 the effect of inertia was taken into ac-
count, but in such a manner that the effect on the
resistive losses was contained in an order of cal-
culation higher than the one considered. Recent-
ly, the problem has been attacked by Stringer, '
who described the plasma by a mixture of guid-
ing-center and fluid equations, which he solved
in the limit of large aspect ratio. The main re-
sult of his calculation is the apparently unlimited

increase over the Pfirsch-ScMNer loss rate,
whenever a certain resonance condition is satis-
fied.

On the other hand, our treatment of the same
problem is valid for arbitrary aspect ratio, and
includes the inertia term exactly. By discussing
the requirements for a stationary solution, we
obtain restrictions on plasma flow, from which
we argue that the increase in plasma loss due to
inertia is also limited. This conclusion appears
to be in agreement with the preliminary results
of a numerical treatment of the problem. '
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FIG. 2. Solution procedure for zeroth-order density
distribution on magnetic surfaces.

to u lnu having the same intercept on the vertical
axis. In Fig. 3 this restriction is exhibited in
terms of the r derivatives of the mass fluxes.

Clearly as ~ -0, the range of mass flux the
short way that is consistent with a stationary so-
lution becomes more strongly limited. This
means that for azimuthal plasma rotation exceed-
ing a certain value a stationary state is no longer
possible. Such restrictions can be re-expressed
in terms of the velocity components v8 and v

&

themselves, a fact which we use later in estimat-

-30-

FIG. 3. Mass fluxes consistent vrith stationary equi-
librium.

ing the magnitude of the plasma mass-loss rate
S'". In the first order of finite-resistivity ef-
fects we obtain, for the case of a plasma source
Q localized at r =0,
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The various terms appearing in Eg. (13) can be
understood as follows. The first bracket is very
similar to the usual resistive diffusion term,
and in fact when inertia is neglected, i.e., when
the density variation on magnetic surfaces van-
ishes, it is exactly that term. The remaining
terms represent the main modification intro-
duced by the inclusion of plasma inertia. The
terms involving

a (v'Vv)'VT v +K 6 )
cosL9

8 ~ L p

the r component of the local acceleration, are
related to the centripetal force, which results
mainly from toroidal flow. This force must be

partially balanced by the appropriate JxB com-
ponent. Part of the finite electric currents in a
resistive plasma represent the attempt of the
plasma to short out the electrostatic fields devel-
oped in the flow, and which, together with the
magnetic field, move plasma across magnetic
surfaces. The remaining part of the electric cur-
rent combines with the magnetic field to confine
the plasma. The final bracket is related to a
Coriolis-type force in the $ direction. Such a
force must be totally balanced by a JxB force,
as the assumption of axisymmetry removes the
possibility of a pressure gradient in this direc-
tion.

Now the velocity components in zeroth order

963
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are given by
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Thus it can be seen that while the first bracket
in Eq. (13) varies as L

' for small L, the other
terms involve a ~

' dependence. Formally it
would appear that for small ~ we do have a large
increase in plasma loss over the Pfirsch-SchlQ-
ter result. However, in the expansion procedure,
we have still to determine the mass fluxes exact-
ly. This is done by requiring that the solution in
first order be periodic in 0. Closer examination
reveals that from this we obtain two complicated

yM =E(NVu). (16)

This is in addition to the zeroth-order limitations
imposed on I' and g which were mentioned above.
Equation (16) and the solvability condition (12)
lead directly to restrictions on the components of
flow velocity:

Iv, /c I-fy, (17)

differential equations with respect to r, for I
snd g. The solution of these equations with the
appropriate boundary conditions would enable us
to evaluate W"' exactly. Rather than carry out
this full prescription, we have made the plausible
assumption that the zeroth-order angular momen-
tum through each magnetic surface is zero. Such
an assumption relates M and E:

2

, IMI exp --,'M' 1+, [(1+~)'-lj

where for representative t, z values, (N'Eu)-1.
One further assumption is required before we

can estimate the orders of magnitude of the dif-
ferent terms in expression (13). This concerns
the "smoothness" of the radial variation of quan-
tities. We require that all functions be well be-
haved in the sense that 8A/Sr-A/r is a reason-
able approximation.

With this information it is easy to show that
each of the three brackets in expression (13) is
of the same order of magnitude. In other words
the contributions to plasma loss due to inertia
are, at most, several times the value of the
term describing classical diffusion. ' This result
seems to agree with preliminary calculations in-
volving the numerical integration of the fluid

equations. For representative situations, a to-
tal ylasma loss of approximately five times the
Pfirsch-SchlGter result is found.
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An experimental and theoretical investigation has been made of the absolute instability
that occurs near 2(d~ when two opposing drifting electron beams interpenetrate in a stat-
ic magnetic field. The theory allows determination of the beam temperature by mea-
surement of cutoff magnetic field or cutoff beam velocity. The result of the measure-
ment is that the beam temperature is equal to the cathode temperature and we conclude
that no irreversible change takes place.

It is well known that the Vlasov equation de-
scribes reversible phenomena in a collisionless
plasma and it has been decisively proved by
Malmberg et al. ' by their echo experiment that
under proper experimental conditions the infor-

mation left behind after phase mixing can be re-
covered by application of a second signal. This
implies that the temperature of interacting beams
which give rise to a growing instability should
not change. On the other hand Etievant and Per-


