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6There are other ways of writing Z in functional aver-

age form as Muhlschlegel (Bef. 5) has shown. Indepen-
dently, D. R. Hamann, this issue lPhys. Bev. Letters
23, 95 (1969)] has employed two random fields to study
the Kondo problem.

~In polar coordinates, d $„=2dR„do
8An alternative scheme for the evaluation of Eq. (2)

is to perform a coupling-constant integral over the
strength of Vk as Muhlschlegel (Bef. 5) has done. Un-
fortunately, in the full ferromagnetism problem as op-
posed to the one-center approximation, this procedure
has the serious drawback of requiring one to integrate
through the insulator-metal transition.

Large-amplitude localized spin fluctuations have
been discussed from other points of view by A. D. Cap-
lin and C. Rizzuto [Phys. Bev. Letters 21, 746 (1968)1;
P. Lederer and D. L. Mills t. Phys. Bev. Letters 20,
1036 (1968)]; N. Bivier and M. J. Zuckerman IPhys.
Rev. Letters 21, 904 (1968)l; and M. Levine and H. Suhl
fPhys. Bev. 171, 567 (1968)).

~OWe note that the terms 1 and —~Q„~R/PI' in Eq. (10)
correspond to the adiabatic and transient terms, re-
spectively, in the Nozihres-de Dominicis [P. Nozihres
and C. de Dominicis, Phys. Bev. 178, 1097 (1969)] solu-
tion of the x-ray intensity problem as employed in the
magnetic impurity problem by P. W. Anderson and
G. Yuval [Phys. Bev. Letters 23, 89 (1969) (this issue)]
and by Hamann (Ref. 6).
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A simple explanation of the Kondo effect is shown to follow from a functional integral
form of Anderson's dilute-alloy model.

This Letter describes a new approach to the theory of dilute magnetic alloys. The nonperturbational
energy lowering associated with the Kondo effect is shown to be a simple consequence of the statis-
tics of fluctuations on the impurity site.

This theory uses a transformation due to Hubbard to replace the two-particle interaction by a Gaus-
sian average over Quctuating one-particle potentials. ' To apply Hubbard's transformation, Ander-
son s dilute-alloy Hamiltonian' must be written in the form

Xo=gsA, nkg+Qedo+ VQ[C~ Cd +Cd~ C~ ],
ko o ko

R = —'U[(nd) —(Sd ) ],

where

nd nay +nd)

~d~ = n d&
—n d&.

Straightforward application of Hubbard's method gives the partition function Z as the double func-
tional integral

Z =Z,f6x5y(T, exp( fd7 [mx'jp+ -~y'jp+X, ] I),

where

X,= (mU/P)"'[x(r)S, (v)+iy(T)n (r)].
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In (5), P=1/kT, the angular brackets denote the thermal average with respect to X„Z0 is the parti-
tion function for X„and T, is the ordering operator with respect to r . In (6), the operators are in
the interaction representation defined by Xo, and the fields x and y are c numbers.

The spin-up and spin-down electrons are only implicitly coupled through the functional integration.
For any particular x(r)

andy�(r),

the quantum-mechanical problems for the two spin systems factor.
We must evaluate

exp(C ) -=(T~ exp[ f-drv, (v)nd, (r)]),

where V, is easily identified from (6). C, can be expanded as a sum of connected closed-loop dia-
grams, which is given in closed form by

C, = J-dh J tv, (r)Gd, (v, st)

Gd, satisfies the "Dyson" equation
8

Gd, (z, y') = Gd, '(7, T')+h J dr" Gd, '(r, w")v, (r")Gd, (7",7').

(8)

(9)

1 6 P mad
Gd '(7 ) = --, , —+ ' 6(~)

+Ed~

which is correct for i 7 i 4) 1 and in integrals.
P indicates principal value. With this approxi-
mation, (9) can be solved by the methods of

(10)

The coupling-constant integration in (8) yields
correct counting of the closed loops.

The preceding development is exact. We now
argue that rapid fluctuations in nd and Sd, at
rates of the order of the d level width 6, are
not important to the magnetic behavior of the
impurity. However Sd should also undergo
large low-frequency fluctuations resulting from
precession if the system has a local moment.
We replace the field y(w) coupling the density
fluctuations by its mean value, and solve (9)
using an approximation for Gd which is only
valid for frequencies lower than 4. This, in ef-
fect, decouples the high-frequency fluctuations
of the spin-up and spin-down systems.

The approximation used on (9) was developed
by Nozieres and de Dominicis in their study of
the x-ray threshold problem. ' It consists of re-
placing G«' by the form

Muskhelishvili. ' The solution is

The first term in (11) is identical to (10) with ed
replaced by hv(r). This is clearly the part of Gd
which adiabatically follows the fluctuating poten-
tial. The second term contains the transient ef-
fects and is a rather complicated functional of v.

For simplicity, we have chosen ed -—-~U. The

y field (in the Hartree-Fock approximation) then
gives a net ed = 0 in (10).

Equation (8) requires the equal-time limit of
Gd. The adiabatic term in (11), as actually cal-
culated, is undefined in this limit; so we use the
exactly calculated Gd'(r, r ) evaluated at ed
=hv(7). It is possible to carry out the h, and 7

integrations in (8) explicitly, since at r =v' the
complicated features of the transient term can-
cel out.

Combining results for the spin-up and spin-
down systems yields

Z =Z,J 6x expj J, dr[V(x-) +T(x)]j.

In terms of the dimensionless field $ =x(nU/b. 'P)"', '

V= (6'/U)$'-(2b/n)[/tan '$-2ln(1+ g')],

P p8 d7' dg(~') 1 1+$~(r)
d7' $ (7)- g'(~') 1+]'(~') (14)

~ comes from the adiabatic part of Gd, and T from the transient part. The V term is exact for r-in-
dependent $. The T term reproduces the Nozihres —de Dominicis transient response correctly when k

consists of an on-off step. ' Equations (12)-(14) contain all the physics of the Anderson model which
we believe relevant to its magnetism.

The "potential" term V has a single minimum at ( =0 for «~&, as shown in Fig. 1. For this case,
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FIG. 1. V(E)/b, vs ( for U/mB=0. 5, 1, and 1,5.

we expand V and T about $ =0. Using a Fourier-
series representation for $,

f,'d»= (P/. )~.l.,l;[ ~.~, (15)

where a~ are the Fourier coefficients at ru = 2~
x n/P. The sum must be cut off at la&, ~

=b, be-
cause of the restriction on (10). The functional
integral separates into a product of Gaussian in-
tegrals of each Fourier coefficient, and the free
energy is

0 =Go+—Q ln 1- +
I ~el &&

This is precisely the contribution to 0 from the
triplet part of a sum of bubble diagrams if each
individual bubble is approximated by the first
two terms of its expansion about ~ = 0 and this
cutoff. The apparent absence of the correspond-
intg ladder sum indicates that the small-$ expan-
sion is not spherically symmetric term by term.

For U& nb, , V(g) has two equivalent minima
at + $„as shown in Fig. l. Evaluating the func-
tional integral at one or the other of these cor-
responds to Anderson's spin-up or spin-down
unrestricted Hartree- Fock approximation. "

For large $, we believe that a form like (15)
is still a good approximation if a renormalizing
factor (1+($')) ' is included. This renormaliza-
tion occurs because the Nozieres-de Dominicis
transient effect depends on the change in scatter-
ing phase shift, which saturates for large $.

A key point for understanding the behavior of
the functional integral in the two-minimum case
is that the transient term is positive definite.
Any individual term in the functional integral is
smaller than the Hartree-Fock term $ = $,.
There is no dynamical effect favoring "zero-
point motion. " However, the increase of avail-

able volume in function space is sufficiently rap-
id to overcome the unfavorable energetic effects
for a certain class of functions.

Consider the set of functions which switch be-
tween +(0 and —

go v times in the interval (0, P).
Because of the high-frequency cutoff, these func-
tions must take the minimum time 1/6 to go
through the "potential barrier" Vg, , so

f d~ V=vVg, /&. (17)

Equation (15) and its renormalized version are
clearly proportional to the average frequency of

For most functions in the set, this should be
v/P times a coefficient n of order unity; so

8f d7 T= vugg, '/(1+], '). (»)
The number of functions in the set is just the
number of ways of choosing v of the N =P~ dis-
tinguishable positions for the zeros of $. The
partition function is

&(nr) (19)

where A is the sum of the coefficients in (17)
and (18).

For large P, the contribution of a particular
v, dominates the sum. It is easily found by us-
ing Stirling's approximation to be

vo = Pke (20)

The free energy is

QHF A8 ~

For large U, A - U/6, and the energy lowering
we have found can be identified with the Kondo
effect. " It disappears at the Kondo temperature
because v, -1.

When the functional integration is restricted to
functions which hop between the two minima, our
expression for Z is similar to a rearranged form
of perturbation theory for the s-d exchange mod-
el recently proposed by Anderson and Yuval. '
Their theory also lacks term-by-term spherical
symmetry.

The present results show that the Kondo effect
can be regarded as a simple consequence of
balancing the virtual energy cost of flipping the
net d spin against the fluctuation phase space
gained thereby.

Calculation of the low-temperature suscepti-
bility and specific heat requires more detailed
knowledge of the dominant g functions, and this
problem is presently under study. '
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The magnetic-phase diagram, in the H-T plane, of MnF2 was measured using ultra-
sonic and differential magnetization techniques. The paramagnetic-antiferromagnetic
boundary, for H along the & axis, is well represented by 7.'N -T = (1.65 +0.15) ~10 H
'K/G2. The triple point is at T3 65.1+0.2'K and H—-3=120+4 kG. The phase boundaries
are discussed in light of existing theories.

In this Letter we report on high-field studies of
the magnetic-phase boundaries of the classic uni-
axial antiferromagnet MnF, using ultrasonic and
differential magnetization techniques. The new
results include (1) the observation of an attenua-
tion peak for ultrasonic waves at the paramag-
netic transition in finite magnetic fields up to the
high-field triple point (T, = 65.1 a 0.2'K, H, = 120
a 4 kG) and (2) the determination of the complete
boundaries, in the H-T plane, between the para-
magnetic and antiferromagnetic phases and be-
tween the antiferromagnetic and spin-flop phases.
When plotted in a normalized form the paramag-
netic-to-, antiferromagnetic boundary in MnF, is
shown to be similar to the measured boundaries
in other antiferromagnets containing Mn". An
analysis of the antiferromagnetic to spin-Qop
boundary shows that the magnetic-field depen-
dence of the susceptibility should affect this phase
boundary near the triple point.

MnF, has a tetragonal lattice and is antiferro-
magnetic below the Noel temperature T„=67.4'K.

The anisotropy energy of this material is very
small compared with the exchange energy, and it
is uniaxial with the c axis (tetragonal axis) as the
easy axis for the sublattice magnetizations. For
such a material the magnetic-phase diagram in
the H-T plane, when the applied magnetic field H
is along the c axis, should consist of three phas-
es': paramagnetic (P), antiferromagnetic (AF),
and spin-flop (SF). In the P phase the magnetiza-
tions of the two sublattices point along the c axis,
are parallel to each other, and have equal mag-
nitudes. In the AF phase the sublattice magne-
tizations are along the c axis but are antiparallel
to each other. In the SF phase, and when B is
small compared with the exchange field Hz, the
sublattice magnetizations are roughly antiparal-
el to each other and are almost perpendicular to
the c axis. The AF-SF transition is a first-or-
der trarisition which is accompanied by an abrupt
change in the magnetic moment. ' Calculations
based on the molecular-field approximation show
that the P-AF transition is a second-order tran-


