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A rigorous method is presented to obtain the velocity distribution function E{&,0) for
free electrons in gases in quasistationary and quasiuniform cases. It is based on the in-
troduction of a particular distribution function f0(co) relevant to the "initial" speeds of
successive paths taken by an electron. The "usual" distribution function E(c,8) can then

be obtained from the "initial" distribution function f0(c 0) by an integration.

In the presence of a quasiconstant (with respect to the relaxation times) and quasiuniform (with re-
spect to mean free paths) electric field E, the distribution function of electrons in a gas may be repre-
sented by' F*(c, 8, r) =F(c, 8)y(r), where c is the magnitude of the velocity, 8 is the angle between c
and E, and r the position vector. However, the velocity distribution function F(c, 8) has never been
derived, since Boltzmann's integrodifferential equation is practically intractable in the case of a func-
tion of two variables. Therefore all authors expand F(c, 8) in Legendre polynomials' of cos8 or in
some other way' in order to have for the unknown a function f(c) of a single variable. Moreover they
do not retain the entire series but usually the first-order terms only. This is equivalent to the follow-
ing two simplifying assumptions, corresponding to a small anisotropy of F(c, 8): (i) The velocity vari-
ations 4cz between two successive collisions, due to the accelerating field E, are small with respect
to the thermal velocity c; (ii) the inelastic collision frequency v~ is small with respect to the elastic
collision frequency v, &.

In a previous paper, 4 a particular distribution function relevant to the "initial" velocities of succes-
sive paths taken by an electron has been introduced. This "initial" distribution function, being unaf-
fected by the electric field, is isotropic when the differential collision cross section is isotropic, and

therefore it can be split into the following product:

F,(c„8,) = fo(c,)w, (8,) =f,(c,)2 sin8, .

The resulting integral equation for f,(c,), though rigorous, has the same simplicity as the usual first-
order expansion of the Boltzmann equation in Legendre polynomials. It is4

f,(c,')= f f,(c,)dc,f —,'sin8, d8, f, G(c-c,')Q(c„8„t)dt, (2)

where Q(c„8„t)is the distribution of flight times [given by Eq. (23) of Ref. 4] and G(c- c,') is the

probability density for speed changing from c to the new initial velocity c, ' upon scattering [given in

Ref. 4 by Eq. (35) for inelastic collisions and by Eq. (36) for elastic collisionsj. Equation (2) has been

recently solved in the case of elastic collisions and constant flight times. '
By means of f,(c,), the rigorous expression of the drift velocity W can be obtained" as the ratio be-
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tween the total displacement (in the direction- of the field) of an electron (proportional to the mean dis-
placement) and the total time of flight (proportional to the mean time of flight T):

S f,"f,(c,)dc,f; sing+0, f, sg(c„g„t)dt f, f,(c,.)w(c, )T(c,)dc,
T f,"f,(c,)dc,f; sing, dg, f,"tQ(c„g„t)dt f,"f,(c,)T(c,)dc,

where s =c,t cosg, + ,at'-(with a=eE/m as electron acceleration) is the electron displacement in the E
direction during a flight time t, w(c, ) is the drift velocity for monoenergetic electrons having initial
speed c, [the expression for w(c, ) is given by Eq. (24) of Ref. 4] and T(c,) is the relevant mean flight
time [given by the denominator of Eq. (24) of Ref. 4]. Notice that, in the case of constant flight times
X/c= v„ it turns out that T=T(c,)= T,. Therefore, since in this case w(c, )=a~„one finds from Eq.
(3) that W=w(c, ) =a&,. This result extends the validity of the known expression for A/c= constant to
the case of high fields, i.e., when assumption (i) is no longer retained.

From the initial distribution function f,(c,) of the speeds, it is possible not only to obtain a rigorous
expression for the drift velocity, i.e. , Eq. (3), but also to solve rigorously transport problems for
electrons in gases when the electric field is slowly varying in time (with respect to relaxation times)
and in space (with respect to mean free paths). Namely, let us show that it is possible to obtain the
usual velocity distribution function F(c, 0) by a simple integration of the initial speed distribution func-
tion f, (c,).

Consider a number d'n, per unit volume of electrons "born" in the time interval dt and having initial
velocities with magnitudes between c, and co+dco and directions within the solid angle dQ = 2m sin0, d 0,.
When the collision cross section is isotropie, d n, is given, using Eq. (1), by

d no = q(co, t)dtdco 2 sin god go,

where the source term q(c„ t) is related to f,(c,) by

fo(co) f q(co& t)dt&

in which T is a convenient mean time in order to have a normalized fo(co). If q(co, t) is appreciably
constant during T (electric field slowly varying in time), Eq. (5) reduces to

and therefore Eq. (4) becomes

d'n, = f,(c,)dc, ,' sin gg ggt/—T.

After a flight time t, a number of electrons d'n, remains, connected to the initial number d'n, by Eq.
(21) of Ref. 4:

d n, =d noexp[ f c(T)/X(7—)dr] (8)

Let us now assume that the velocity of the above electron group (of number d'n, ) is between c and c
+dc and between 0 and 0+d6). Since, during a free flight, the component of the motion in the direction
perpendicular to acceleration a =eE/m is uniform and the component parallel to a is uniformly accel-
erated, the initial speed c, and the initial direction 6, of the group considered are related to e and 8 by
the relationships

co sinj9o = c sin6,

c, cos6), +at = c cosI9,

from which

co = (c'+a't' 2cat cos 0)"', —

c sin0
8o = arctan c cos8—at

Let us change the variables in Eq. (8), substituting in it Eq. (10) and taking into account that

geo/Bc Bco/8 0 ~ C
D 0 sg /sc 0 g /Sg (c2+a2t2 2cat eosg)1/2 '
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3 [ (
2 2 2 8) / ] 1 c sin 8

' c( r) dcd 8dt

2 c'+a't' 2c—at cos8, A(T)dT

"Summing" Eq. (11) for all the times of flights, i.e. , integrating Eq. (11) between 0 and ~, we get

d n c sin8 "f0[(c +a t -2catcos8)" ] ' c(r) N.
dcd8 ' 2T, c'+a't'-2catcos8 —,&(&)d&-

(12)

When the simplifying assumption (i) is valid, which is equivalent to the statement at «c =c„Eq.
(12) reduces to

F(c, 8) = f,(c) — exp — d T =-,'f,(c)sin8 = f, (c) -,
' sin8sin8 X(t) 'c(7) '= ", . &(c)/c, . T(c)

7' ' ' T

Moreover

f(c) = 5 +(c, 8)d 8 = fo(c)[T(c)/'T 1, (13)

which is the relationship intuitively postulated by Braglia, based on the consideration that the proba-
bility of finding electrons started with a velocity c, =c is proportional to the relevant time of flight,

In order to have the usual normalized distribution function I" (c, 8), the constant time interval T must

be the mean time of flight given by the denominator of Eq. (3). This condition appears evident if one

normalizes both sides of Eq. (13).
Summarizing, the method suggested here for solving problems of transport phenomena for electrons

in gases (diffusion, drift, excitation, ionization, and so on) when the electric field is slowly varying in

space and time, is the following one. One first solves the integral equation (2), in which the unknown

is a function f,(c,) of a single variable, and then obtains the usual velocity distribution function by an

integration, as given by Eq. (12).
I thank Professor R. Bonalumi for helpful discussion during the development of this work.
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