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matrix element in Eq. (4) has no subtractions in p' or k'. In any case, unless we impose some sym-
metry constraint on F, (t) such as proposed by Suura, ' F,(t) will now depend on many unknown inelas-
tic amplitudes involving the heavy w and A mesons.
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We propose an integral over the Veneziano amplitude which introduces singularities of
two-body inelastic unitarity in the amplitude. The model provides a framework for a
unified treatment of quantization conditions, the stability of particles, the Pomeranchuk
singularity, and decay of particles by pion emission.

Recently a model for the strong amplitude has been suggested by Veneziano' which has a number of
desirable properties but is in disagreement with unitarity. In this note we propose a generalization
which partially remedies this difficulty. We take the view that the Veneziano amplitude is in some
sense a zeroth approximation to the correct amplitude, and its success suggests that the corrections
are small. We write the Veneziano amplitude as'

r(J '"-~(s))r(J '"-~(t))
F(2J '"+I n(s)-n-(t))

where J '" is the lowest physical angular momentum on e, and l is an appropriate integer ~0 and
J' '" ~ ~l~. . We take o. (y) =a+by. The fundamental Ansatz of our model is

I(J " a bs)r(J '—" a—bt)—-
A(s, t) = J daP(a, a, L, e, ~ ~ ~ ) I (l 2J '"-2 bs bt)--

" '(—1)' 1(J " a bt) — — I'(J '" a bs)-—
Z n! I'(l+ J " a —bt —n)(J '" -a bs+n) I'(l+—J —'" a-bs n)(J '" a-bt+n—)--
~(—1) I'(J' '"—a' —bt)

n! I'(l+ J~'" ao —bt —n)(J " -ao bs+n) -I'(—I+J '"—ao —bs —n)(J '" ao —bt+n)-
which amounts to "smearing" with a weight p all
but k poles of the Veneziano amplitude about the
intercept of their trajectory. Clearly the above
form is not the most general one~ but has the vir-
tue of being quite simple and yet possessing a
number of very desirable features. If the devia-
tions from the Veneziano form of Eq. (1) are

small, our generalization should be reasonably
good. Note that one can write partial-fraction
(pole) expansions for the Veneziano form in the
integrand of Eq. (2) and see that Eq. (2) has the
form of a dispersion integral in either s or t with

p being a weight function. Although the form of
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p is a dynamical question, some general results
can be obtained without knowledge of its exact
form. For example, our results concerning tra-
jectory intercepts and stability of particles de-
pend only on the positions of the branch points
which are introduced by our representation. We
shall choose p to be strongly peaked about a', to
tend to 5(a —ao) as e-0 [thus A(s, t )-A (s, t) in
this limit], and to be regular in a neighborhood
of the negative real a axis. The simplest exam-
ple of such a function is

p (a, a', L, c) o. sf(a, a', L, e)
a-a +E

For this particular p we will derive properties
of the scattering amplitude and thus show that the
general representation can provide a good de-
scription of some processes. We shall take I-&1
in order to preserve the Froissart limit, and a'
- L to maintain the e -0 limit. Choosing f to
have no poles in a and such that the integral in
Eq. (2) converges, we obtain the following re-
sults:

(i) The amplitude has branch points in s at

s,"=(1/b)(J '"-L+n+b), n=0, 1, 2, ~ ~ ~, (4)

and similarly for t. The nature of the cuts will
depend on f. It is natural to associate these cuts
with the elastic and two-body inelastic s and t
cuts.

(ii) The amplitude has poles at

s~" = (I/b)[Z '"-a'+n+ie8(n-k)],

n=0, 1,2, ~. . .
(5)

If n- 0, these poles are on the real axis and ap-
pear on the physical sheet, but if n &k they are
off the real axis at a distance +i& from it and on
an unphysical sheet. The residues of these poles
will be polynomials in t of order n-l. It ps rea-
sonable to associate these poles with stable and
unstable particles.

(iii) As ~s~ —~ the +it poles on the unphysical
sheet contribute Hegge-like behavior to the physi-
cal amplitude, of the form

f'(t)( s)D7+Bo+ b 8 k t t

with m = -l-J '". This is obtained by rotating
contours in the a plane. To order & there is also
a contribution from the background integral
which depends on the choice of f. To order e
there is also a contribution from fixed pole terms
coming from terms in the sums over n in Eq. (2)
which nearly cancel.

We begin by examining results of the model
which are independent of the specific choice of p,
depending only on positions of singularities.
Since the model yields an infinite number of
thresholds, it is necessary to see if their posi-
tions can be made consistent with the particle
spectrum of the model. A physically attractive
interpretation of our spectrum of thresholds is
the stepwise decay of resonances through emis-
sion of massless pions. This interpretation ap-
pears to be confirmed by our investigation of the
connection with partial conservation of axial-vec-
tor current.

Equation (5) describes a set of poles and Eq.
(4) a set of thresholds of the amplitude. If we as-
sume that the external particles also lie on a tra-
jectory and thus satisfy a condition analogous to
Eq. (5), we can demand consistency between ex-
ternal poles and thresholds. This consistency
can be achieved only if one of the external parti-
cles is massless. Labeling the massless parti-
cle P, the other external trajectory A, and the
internal trajectory X, the obvious interpretation
of our model is that we are incorporating the de-
cay of X into A through emission of a massless
pion. To order E we have, matching poles and
thres holds,

(g m D 0
) (g lIl ll L y )

n=012 ~ ~ ~

from which it follows that b~ = b» (universality of
slopes) and

'"-ag = Jz '"-I-x+&x.

We can now consider an amplitude with X and A
exchanged. Although this amplitude will be quite
different from the previous one, it will again be
true that in our model

The fact that particle I' is a massless pion sug-
gests that we take into account partial conserva-
tion of axial-vector current in the fashion sug-
gested by Lovelace, Ademollo, Veneziano, and
Weinberg, ' and Coon. ' This is nontrivi. al when A
and X are trajectories of opposite normality.
(Our parity considerations and notation are the
same as in Ref. 5. ) Our amplitude will vanish at
the required spot to order &. Now Coon has
pointed out' that the intercepts of trajectories
with opposite normality can differ by —, (a»' =a&'
+ 2) only if J'» '" -Z~ '" - 1. These conditions to-
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gether with Eq. (9) imply that kz - , +—Lz a—A' or,
as Lz ~ a~', it must be that A~ - 2. Thus there
must be at least one stable particle on trajectory

Therefore it is necessary to include terms
outside the smearing integral in Eq. (2). By ad-
mitting at most one stable particle we can avoid
undesirable power behavior from these terms.
This is because the spin j of a stable particle is
related to n by j=n+J '". The asymptotic behav-
ior of the nth term is (-s)~ where 4 = l+J '" is
the usual helicity-flip index. Since J '" ~ 0, only
the n=0 term is compatible with the Froissart
bound (j & 1). Thus, there can be at most one sta-
ble particle on any trajectory.

Furthermore, as k~ is an integer,
1

Lg =ay + 2+nz, m =0, 1, ~ ~ -, (10)

subject to Lz & 1, or az'- 2. Similarly, Eq. (8)
implies that

L&=a '+ ~+n, n=0, 1, - ~ ~,

with a&'- 2. If X, the higher trajectory, has in-
tercept a' greater than zero, then m =n=0.
These considerations indicate that no trajectory
can have intercept higher than 2. All the above

conditions seem to be approximately satisfied by
the usual pairs of trajectories with opposite nor-
mality: pf mA-„b, -N, K*-K, and I;* L In the
case of pf vA, -in the wm system, Eq. (4) and the
fact that E&f

'" = 1 indicate that Lp f = & so that
azq' = 2, and the agreement is particularly good.

To illustrate other properties of the model, we
shall choose p to be

e/m (a-L)'~'
p (a, a', L, e) =, (12)

It is then easy to see that the branches introduced
at the two-body inelastic thresholds are square-
root branches, and the resonance pole associated
with a particular cut is found only on those sheets
reached by circling the corresponding threshold.
The poles appear in complex conjugate pairs,
thus preserving the real analyticity of the ampli-
tude. To study the asymptotic behavior of the
amplitude, it is convenient to change the integral
in Eq. (2) to a contour integral, with the contour
running around the cut of p to -, on the arc at
infinity, and closing on the line Re(a) =L. Then,
if ~s~ —~ with Res &0, Re(t) &0, the only poles en-
compassed by the contour are those of p, yield-
ing

A~(s, t) CC (az a' ie)' -'B(-1 s a' ie-, I--f--a'-ie)+ (az,-a, +is)'~'B(1-s-a'+is, 1-f—a'+is),

where B is the Euler P function.
The pole terms exhibit the usual Regge power

behavior times an oscillatory component of the
form cos(e lnbs) which is unimportant for e lnbs
«1. The integral along the line Re(a) = L contrib-
utes a background term bounded by ek(t)~s~ "/
(lns)' ' as s grows large. The presence of the
logarithm would seem to indicate the presence of
J-plane cuts. Specifically, it is very tempting to
associate this term with the Pomeranchuk singu-
larity, in which case L must be very close to 1.
This association has the very attractive feature
of connecting the Pomeranehon with a "back-
ground" contribution and not with direct-channel
resonances, as conjectured by Harari. ' It also
fixes, through Eq. (11), the intercept of the p to
be very close to &, which is then consistent with
a zero-mass pion. The agreement is not as good
for the N-& or K*-K case.

The difficulty with the above interpretation is
that the Pomeranehuk singularity thus construct-
ed will not have the correct isospin properties.
For instance, in vm scattering, if we use ampli-
tudes of well-defined isospin with crossing and
Bose symmetry and without I= 2 resonances, the

background will contribute to both the I= 0 and I
= 1 amplitudes. This difficulty can probably be
resolved by adding appropriate terms to our mod-
el, but in the absence of a dynamical scheme,
such a procedure must be ad hoe. If we now 1et
~s

~

-~ with Re(s) &0, poles of the integrand in
the right half plane migrate to the left half p1ane
and into the contour, after pinching at L and giv-
ing rise to the threshold branch points. These
po1es are connected with the resonance poles in
s for s &0 and their residue in the physical sheet
vanishes. The asymptotic considerations for
Re(s) &0 remain valid.

The model we have described has the analyti-
cal structure suggested by two-body unitarity
with an infinite number of channels, and with the
channels given by all possible "m A." resonances.
It is clearly, however, not yet unitarity. It pre-
serves the properties and simplicity of the Ve-
neziano model and it suggests that certain parti-
cles must be stable for consistency. It also im-
plies a possible role for the Pomeranchuk singu-
larity which is strikingly different from that of
the other singularities in l.
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We suggest a general framework for unitarizing the Veneziano model for 7t.x scattering,
and deduce some immediate consequences. By duality the unitarity s cut generates a
moving Regge cut with branch-point trajectory 1+ n't in the approximation m~= 0, with
n' the slope of the p fo traject-ory. In principle m~ may be calculated from the shift of
the Adler zero. A crude estimate yields m = (e') ~ m I" =95 MeV.7T p p

%e suggest a general framework in which the unitarization of the Veneziano model might be attempt-
ed, and describe some immediate qualitative consequences. Consider w m scattering in the approxi-
mation of vanishing pion mass. The scattering amplitude in the Veneziano model is given by'

A(s, t) = V,(n„a,),
-pI''(1-n, )I'(1-a,) n, + n 1-1

Vc(n~~ n~) =,
(

'

)
p(l —n~ —at)

s t D=O s

where a, = —,'+ n't is the exchange-degenerate p-f trajectory. The residues of the s poles are poly-
nomials in t, so that at a given mass there exists only a finite number of resonances with a maximum
spin. The series of s poles add up to a function possessing Regge poles in the t channel —a phenome-
non known as duality. More precisely,

(s poles at n, = 1, 2, )» (J poles at J = n„, n, 1, ~ ~- (2)

Unitarity is not satisfied, because there are no branch cuts in s. The obvious modification of replac-
ing n, and n, by dispersion integrals fails, for the residues of the s poles would not remain polynomi-
als in t, and consequently there would exist resonances of all spins (up to ~) at the same mass.

Our generalization is motivated by the view that a pole term in the Veneziano model is the Born ap-
proximation to some true propagator. By analogy with the Lehmann representation in field theory, we
take

A(s, t)= f dx J dy p(x, y; s, t)V, (n, -x, a,-y), (3)

where s and t are complex numbers, and p is symmetric in x, y and in s, t. In general p must depend
on s and t, and have branch points in s and t, in order that the Mandelstam double-spectral functions
be different from zero; but the s, t dependences will be neglected in first approximation. For conver-
gence of the integrals in (3), p should vanish faster than any power of x as x —~. Owing to the x inte-
gration there occurs a branch cut in s in each and every pole term of V„with respective branch
points s = (n+ &+x,)/n' (n=O, 1, 2, ~ ~ ). These correspond to the elastic threshold (n=0), and produc-
tion thresholds (n&0) for mm AB, wher-e A and B are particles on the p f' trajectory-and daughter tra-
jectories. Requiring the elastic threshold to be s, =O (in the approximation of vanishing pion mass),
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