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We demonstrate an exact equivalence between a Kondo problem and the thermodynam-
ics of a classical one-dimensional gas with alternating charges and a logarithmic poten-
tial. This classical gas has a critical point.

We demonstrate an asymptotically exact equivalence' between the simplest Kondo problem, the
ground state of a spin S = 2 interacting with an otherwise free electron gas, and the thermodynamics
of a certain one-dimensional classical gas. The central point is an asymptotic expression (i.e. , for
EFt»IJ for the probability amplitude for a succession of spin flips. The interaction in the classical
gas is of logarithmic (two-dimensional Coulomb) type for which simpler cases have been solved exact-
ly by Dyson, Wilson, and Gunson. ' Some physical results from the classical gas problem are available
already —e.g. , that the antiferromagnetic case has no mean spin —and these will be discussed in a suc-
ceeding communication. Generalizations to finite 7.', higher spin, and more physical models seem not
forbidding.

We divide the Hamiltonian as follows:

X Xo +X/

$(o=g eqn~, +JS, P c~, (s, ) .c~ ...
k, a Ajf'oa '

Xi=el+ cp ci, ~[S(s ) +S (s) ],
k, k'

The eigenstates of X, are

%, =o.Q c, tg, d, ,~ivac), @i=PQ d, g .c &tivac),

where cj, are scattering states appropriate to the potential +4J'[phase shift 5, = ,'wJp(EF)I and d~--
are scattering states appropriate to -4J (5 = -6,). For J antiferromagnetic, 5, is negative.

The lowest eigenstate with S =+2 we. denote by e4,&. We calculate

E(t) =(o.+„(exp(iXi) inc„) = g [(ne„(e )I'e'~',

where 4 are the exact eigenstates. We assume that the Fourier transform F(u&) must have a branch
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point or pole singularity at the ground-state energy &u, . [I.e. , states infinitesimally close to the ground
state are assumed not all orthogonal to e4«. This is not a doubtful assumption; if it appeared so, we
could turn on 4 in (3) slowly, following standard methods, and ensure nonorthogonality. ] t can be com-
plex; note that if t=iP, the least rapidly decaying part of F, which is now real, refers exclusively to
the ground state and those infinitesimally close to it.

In the interaction representation we may write

F(t) = (n4', )[exp(+iX,t)T(exp[i f, X'(t')dt'p ~n4«),

where

X'(t') = exp(-iX, t')X'exp(+i3C, t').

Thus a typical term of F(t), for example the second order which is the lowest nontrivial one, is

(n%'«( fo dt, f, dt, exp[i3C, (t-t, )](iX') exp[i3C, (t,-t,)](iX') exp[iX, (t,)] ~ n@,&). (8)

If we measure energies from (n4',
&

(3C, ~n4«)
= A„exp(iX, t, ) = 1. Then the effect of X' is to
flip the local spin (n —P) at t„at the same time
destroying an electron of down spin and creating
an up spin, both at the local spin site [in 4'(0)];
then from t, to t2 all particles propagate under
the new potential --,Js, (0) but at t, we get a re-
verse flip and at t measure the amplitude that
the system is still in the original state.

The method is based on Nozieres and de Do-
minicis" exact solution of the x-ray intensity
problem, which we had earlier observed4 was
closely related to the Kondo problem. Nozieres
and de Dominicis have calculated the ground-
state-to-ground-state amplitude Fgt) for a pro-
cess involving creation of a particle and simul-
taneous application of a scattering potential such
that the phase shift changes by 0 at I;=0, the
particle to be destroyed at t as the scattering is
turned off again. We see that the first nontrivial
term (8) for the Kondo problem is just the pro-
duct of two x-ray problems, one for each spin,
integrated over appropriate time intervals:

t, t, t5

GQ(t] -t6) =

cutoff parameter 7'-FF ', but it is necessarily
as given in order that F(iP) be real. As in the
ground-state-to-ground-state problem, ' only the
relative phase shift 25 is relevant for the asymp-
totic behavior. For symmetry reasons, there is
no e' ' term.

The general term T~ of (6) involves a sequence
of 2n spin reversals occuring at t„ t„~ ~ ~, I;, .
The ground- state-to-ground- state amplitude for
this process is what we need, and is clearly the
product of amplitudes for two generalized No-
zieres-Mahan processes with a sequence of n

emissions and reabsorptions and n changes in
the scattering phase shift by 26, .

This amplitude is calculated by a generaliza-
tion of their method, as the product of three
factors: (a) the unscattered amplitude G,(t) for
n emissions and reabsorptions, summed over

Jf dt-, f dt2FN1(t, -t2)FN1(t, -t2),

where I ~ is the appropriate Nozieres correla-
tion function,

Here we define

45, 40,2
+ ~ ~ Jp»

5 r2

e is small and positive for the antiferromagnetic
case. In choosing the phase of I'&we have fol-
lowed Nozibres; it essentially appears in his
calculation as part of the somewhat arbitrary

FIG. l. Example of diagrams contributing to Go.
The contribution of one set of times.
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all possible ways of connecting the emissionst„,and reabsorptions t, (see Fig. 1); (b) a
correction factor y(6, t)/G, (t) for the single-
particle scattering in these diagrams; and (c)
the ground- state-to-ground- state amplitude
e ' '& given by exponentiating the sum of all
loops C(6, t).

Once we have calculated either (a) or (c) the
total answer becomes very plausible. Let us do
the former. As Nozieres observes, 6, for a
single emission at t, and reabsorption at t, is

sponding to pairing of t, with t, or t4. For the
second case one of the time sequences is re-
versed: Thus

1 1

1' 2 1 4
= (i~)'

ts-t2 t -t

we do not want to use Nozibre's time-ordering
convention —since the sequence of times in (8) is
predetermined —so we observe that if t, is later
than t, the sign does not change.

There are two second-order diagrams corre-

In high orders it is necessary to observe that
when we add an extra pair of times to a given
loop, we add either a reversed time sequence or
a pair of crossed lines, corresponding to a re-
versal in the ordering of a pai'r of fermions; thus
it is possible to show

The second identity is the consequence of the fact that the determinant is of Cauchy form. '
Now if we study the Muskhelishvili equation' which Nozieres and de Dominicis solve to obtain the

simple solution for y(6, t), we find that it amounts to finding that function for which the poles at 0 and
t are replaced by a branch cut joining them. Generalization of this result to the n pairs of poles in
(1S)—the second form is the clearest —immediately shows us that the only function with all the right
analytic properties is

(i4)

A full derivation has been carried out and will be published later.
It is interesting to check this by means of perturbation theory. As pointed out previously the emis-

sion process is simply equivalent, physically as well as mathematically, to a sudden phase shift of m

(e.g. , to the sudden destruction of a bound state). Thus the true weak-potential limit corresponds to
A(5) =w, or I-e-0. In this limit direct calculation of the necessary overlap determinant using an
identity suggested to us by Thouless,

(det(U~~ ()' = exp ln(UUt+ 1-1)= exp' Z ( U;J(',
!- ~(JF, J&JF

leads to (14).
For pure imaginary t, the formulas become somewhat easier to handle. Thus we may write the re-

quired amplitude. for pure imaginary time, F(iP), exactly (in the asymptotic limit of large t3EF) as

P((d)=) d"f d()„f d()„, ~ f dd, exp (P-Pe)), (-1)" ")n( ' '')
nQ, Q n&n'

(divergences when P~ -P~, are to be cut off at T). This equation may be exactly interpreted as the
grand partition function of a classical one-dimensional gas of charged hard rods constrained to be
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alternately + and —,on a line of length P. Their
interaction is the two-dimensional Coulomb force

v(x-x')
( ) i x,-x,

)

one-dimensional systems with long-range inter-
actions often have critical points. )

We thank J. J. Hopfield and P. Nozieres for
discussions and use of their work before publica-
tion.

The chemical potential is given by

e "=P
and the free energy f(T) per unit length deter-
mines the ground-state energy according to

F(fP) e'-"o-e '" )~

In a subsequent Letter we will show that the
point e =0 (for small J) is a critical point of this
system, separating the region where the charged
pairs are all associated from that where some
are ionized, the latter being the region of zero
net spin. It is fascinating that the simple-ap-
pearing Kondo system is isomorphous with one
which certainly has at least one critical point
and possible more. (It is a commonplace that
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By using a functional integral formulation of the theory of itinerant ferromagnets above
the Curie point, we show that for strong Coulomb interaction U, there are localized mo-
ments exhibiting a characteristic Curie-law susceptibility with the correct free spin-&
limiting value of the Curie constant. For weak U the same formulation gives a Pauli-
like susceptibility, again with the proper limit, while for intermediate values the theory
gives a smooth interpolation between the extreme cases.

The presence of local-moment aspects in band
ferromagnetism has long been a bafQing problem.
The most striking example of this is iron. The
high-temperature susceptibility, neutron scatter-
ing, alloy experiments, etc. , a11 point to the
presence of localized moments, while transport
properties show unambiguously the itinerant
character of the d electrons. ' We report here on
the first results of a new theoretical apyroach to
such systems. The theory is based on an exact
transformation of Stratonovich' and Hubbard'
which eliminates the two-body interaction in fav-
or of a Gaussian average over fluctuating one-
body potentials. We concentrate here on the
paramagnetic phase, leaving cooperative effects
for future publication.

Since there is little short-range order at high

Ho + peg pnoQ+'E(f c+n~
k, a a

+ g[Vqcj, tcz +H.c.],
k, o

H, = Unyyny)

aU(nest n~g:) + a-U(n~t +-n~))

(la)

(ib)

temperatures, we expect the problem to be equiv-
alent to an aggregation of one-center problems.
The one-center problem can be represented by
an Anderson model4 of an "impurity" atom im-
mersed in an effective band. While orbital de-
generacy (Hund's rule) is important in practice,
most of the essential features are already con-
tained in the nondegenerate orbital model treated
here.

The Hamiltonian is H, +H„where if 0 =—~1,


