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ISOTOPIC-SHIFT PARAMETERS IN THE NILSSON MODEL
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Fradkin's "compressibility under deformation" parameter ( is calculated using the de-
formed Nilsson model of the nucleus. Numerical values in the range -0.21 ~ ( ~+0.26
are obtained for 62Sm, 646d, 70Yb, and &2U and for -0.1 ~P ~+0.3, to be compared with
the empirical value ( - -0.2 +0.1. It is suggested that the effect comes from the satura-
tion property of the nuclear force.

Various methods have been developed over the
past few years to study accurately small differ-
ences in nuclear charge and mass distributions.
Muonic atomic transitions, ' elastic electron scat-
tering, ' isomeric shifts, ' and isotopic shifts of
atomic spectral lines' have supplied information
on the proton-distribution rms radii, while strip-
ping reactions' and neutron scattering' have stud-
ied the overall mass distribution. In particular,
Stacey' has described the various attempts made
to explain the changes in (R~'&, the mean-square
charge radius, for neighboring isotopes in terms
of the changes in the atomic number A and P~, the
proton-distri6ution deformation parameter. More
specifically it is well known that Fradkin' was
led to introduce empirically a "compressibility
under deformation" parameter $ in order to ac-
count quantitatively for the P~ dependence of the
isotopic-shift effect. Following a paper by the
present authors' (later referred to as CC), where
a theoretical justification for introducing such a
parameter was given in the framework of the po-
tential-volume- conserving deformed-oscillator
model, the present Letter describes a detailed
numerical calculation of $ using the deformed
Nilsson model.

The formalism of Bohr' has been generally
used by many workers to investigate isotopic
shifts in heavy deformed nuclei. '" %e shall fol-
low CC and use a slight but convenient modifica-
tion.of it. %e suppose that the nuclear wave func-
tion obeys the well-known assumption of factori-
zation into a rotational part and an intrinsic de-
formed part Iy, &. In the principal-axis system
we have

ton distribution are defined through the equations

(x '&, =[(x, '&(x, '&(x, '&1"',

(x»'& = (x~'&,

(2)

&& exp[2(5/4w)'"P~ cos(y~ -~2kw)].

Introducing (3) in (1) and expanding the exponen-
tials for small Pz yields the usual relation

(3)

«, '&

=3(X '&, [I+(5/4w)P '+6(P ', y )+. ] (4)

The quantity (X~'&, was found empirically by
Fradkin to have an additional dependence on p~ of
the form

(Xp2&~ = (X~ ')[1+
(PAL ],

with

where $--5/8w =-0.2, and (X&2 & is independent
of Pz, whereas for a strictly incompressible den-
sity distribution it is (X~ &, which is independent
of Pz. Our task is simply to compute (X~'&, ac-
curately and then determine its dependence on P~.

The deformed Nilsson model" assumes that the
intrinsic wave function jy, &, corresponding to a
K =0 state of an even-even nucleus, is obtained
as an eigenstate of the one-body Hamiltonian

H„;h =H (p„, y„)+H8 y
(I' ~ o', 1'1'). (6)

Here H is the Hamiltonian of a deformed oscilla-
tor and is written as

p R

H'(P„, y„)=) "--+ -', g~„'), mtd

«, '& =(X.IX,2+ I,"+~,'IX.&
= Z (X»'&

k=x

The deformation parameters P~ and y~ of the pro-

and

S~ I,
= b&u, e p[x-(5/4 )'"wP„sc(oy ', kw)], (-8)-

F&u =E /A'" E, =41 MeV.
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The form (8) ensures that m, u, &u, = e,', a poten-
tial-volume- conserving condition proposed by
Mottelson" and used recently by Lande" to en-
force the saturation property of the model. The
difference ~(P, y ) =H (P, y )-H (0, 0) is to
be viewed as the quadrupole interaction plus a
small amount of repulsive monopole interaction.
The monopole part leads to an effective change
in ~o of the form

(do' =(00+ 6(00 = [q((d& + (02 + &d3 )-(do ] ~

-=.[1 (5/6 )p."O(p.', y. ) ~ ~ ~ ]. (9)

The form (10) reduces to the usual one when P
=0, and in general (7) can always be diagonalized
exactly inside a single deformed major shell with

quantum number N. We assume the values of y

and D to be independent of P„and y and we
choose them separately for each deformed maj or
shell. For N =0 to 6 the following values are
used:

y~ = 10, 0.1, 0.1, 0.07, 0.05, 0.05, 0.05 j,

D)y = (0, 0, 0, 0.35, 0.45, 0.45, 0.45].

Using 0,' = 0/m&e„ the equivalent spherical-os-
cillator radius parameter, the dimensionless pro-
ton quadrupole moments Q;, i =1, 2, 3, can be de-
fined in a Cartesian basis as

Q, =&~.IZ, ( /f:)lx. &,

with

(12)

(i3)

The sum is over the occupied single-particle pro-
ton states ly~), chosen as having the lowest value
of (y~l 4H + 2H'l yz) which is taken as an approxi-
rnation to the Hartree energy. The deformation
parameters P~ and y~ corresponding to the pro-
ton density distribution can now be computed by
using (2) and (3) and noting that

We shall come back to this interesting equation
later. The parameter P~ is approximately equal
to Nilsson's 6 when y =0. There is some free-
dom in the choice of H8 (1'a, ll'l') when P
0. Here we choose to use"

H'g
y

(1'0',
l
l' l') =-h(ooi&[1' o+Dl' 1']', ~(10)

where
1 Z 'JJ i& Pg;~o S, j=i

have calcula, ted Q~, p~ vs p„ for -0.1 ~ p„-+0.3
(y =0 or 60') by obtaining the eigenfunctions and
eigenvalues of (6) to an accuracy of 1 part in 10'.
The study included all even-Z cases up to 100.
The results are presented in Table I for the de-
formed nuclei 62Sm, ,46d, and 7oYb, for which
data exist, "and for»U by comparison. The
quantity AQUA, =Qz, (p )-Qz, (0) is given together
with p~ (y~ =0 or 60'). Fradkin's parameter p is
then readily computed as

k(P, ) = &Q,./Q, .P,'

The values Q~, change abruptly when the set of
occupied orbits with lowest energy changes. "
For the first three cases in Table I the sudden
increase in AQ~, comes from occupying orbits
in the next major shell, which has a larger rrns
radius. The occurrence of hQ~, =0 for p ~ 0.15
in VoYb is due to the fact that the protons in this
case close a major oscillator shell (N=4). These
particular results, in the region of strong de-
formation, indicate that $ fluctuates between ap-
proximately +0.25. The results for all the other
nuclei (not given here), however, show that $

tends to be negative and of the order of -0.15.
Since the precise value of $ is clearly model de-
pendent it is probable that a refitting of isotopic
data using the computed values of $, as was done

here, instead of -5/Bm, would prove a sensitive
test of the Nilsson model and its parameters. We
should also mention that the present results could
be useful in other related fields. In order to
compare the results of isomeric-shift measure-
ments, which give h(R, ')/(R, '), with recent Cou-
lomb excitation measurements" of AB(E2)/B(E2),
it is important to establish the relationship be-
tween b, (R,') - (R~') and b,P&2. Usually $ has been
taken to be zero for the comparison. This rela-
tion is also important for predicting A(R~')/(R~')
from P-band mixing theory. In ",22Sm, this calcu-
lation was done'7 with P =0.304 and $ =0, in good
agreement with the results of Table I.

Finally, we conclude with a short discussion of
the origin of this nuclear compressibility factor

We may find a heuristic explanation of the ef-
fect by going back to Eq. (9). Had we decided not
to include ~=+2, +4, ~ ~ ~ effects in the diagonali-
zation of H~„-, we would at least have used ~o' in-
stead of &u, in (14). Since Ido' occurs in the de-
norninator the whole calculation would have start-
ed with the expression

(X'p ), = bo'Qp, = (8/m(uo)Q~„ (14)

with Qz, = [Q,Q,Q3]"3. In the present work we
(Rp*) = —— (1-—P *)Q~, '(1+—P '). (i6)
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Table I. Changes in Q~ vs Pp and P~ for Sm, Gd, Yb, and U.

62Sm 64Gd 7O"' 92

h, Q b, Q h, Q AQ

0, 280 -0.0370. 3

0. 275 0. 266 0.060

0. 25 0.211 -0.?73

0.273

0.258

0.244

0.225 0.198 -0.259 0.229

0. 2 0. 185 -0.265 0.162

0.089

0.107

0.126

0.146

-0.143

0.175

0.15

0. 172 -0.260

0.158 -0.254

0.148 -0.140

0.135 -0.136

0.125 0.145 -0. 246 0.122 -0.132

0.1

0. 075

0.05

0.130 -0.236

0.087 -0.092

0.108

0.065

0. 068 -0.066 0. 046

0. 025 0. 046 -0.040

0.000 0

0.024

0.000

-0.025 -0.038 -0.024 -0.026

-0.05 -0.064 -0.050 -0.055

-0.120 -0.171 -0.111

-0.126

-0.027

-0.015

-0.004

-0.006

-0.033

-0.081

-0.136

-0.075 -0.093 -0. 107 -0.084

0.332

0.234

0.219

0.204

0.189

0.134

0.075

0.062

0.050

0. 037

0.025

0.012

0.000

-0.012

-0.025

-0.037

-Q. 050

1.206

0. 929

0. 950

0.972

0. 995

0. 575

0. 000

0. 000

0.000

0.000

O. OOQ

0.000

0. 000

0. 000

0.000

0.000

0. 289

0.274

Q. 219

0.204

0.189

0.174

0.158

0.140

0.122

0.102

0.080

0. 057

0.016

-0.036

-0.068

—0.086

-0.104

-0.520

-0.478

-0.524

-0.502

-0.476

-0.443

-0.405

-0.358

-0. 302

-0.237

-O. 166

-0.102

-0.017

-0.092

-0.122

-0.159

Q (p =0) 90.333 94.000 105.000 152.652

Now this expression already includes the Fradkin
correction (assuming P~

—
P~); it would be there-

fore sufficient to show that Q~,
' has a weak de-

pendence on pz. This argument suggests that
Fradkin's parameter is the result of the satura-
tion properties of the nuclear force. This second
approach might also allow one to include more
easily the effects of pairing, "a point which was
neglected here. Further work in this direction
will be reported elsewhere.
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A systematic analysis of the electric dipole sum rules in the different isospin channels
is given. The connections between these sum rules and the well-known old ones are clas-
sified. A simple application is given in resolving the isospin components of the nuclear
giant res onance.

The Cabibbo-Radicati' sum rule has been considered one of the most useful results of current-alge-
bra. theory. It has been derived for isospins T= z and 2 =1; these cases practically exhaust elementa-
ry-particle applications.

This sum rule has been applied in nuclear physics' to the isodoublets 'H and 'He and with various
models to other nuclei. ' Recently a generalization of this sum rule to any T has been given which is
in contrast to a previous generalization given by the authors. '

The aim of this Letter is to illustrate clearly the connections between the generalized Cabibbo-Radi-
cati sum rule, ' the sum rule recently proposed, ' and the other sum rules, some of which are well
known, which one can deduce in a simple way from the algebra of the dipole operator D. We shall give
all these sum rules in a compact formulation, in the long-wavelength approximation. In the same man-
ner we exploit other possibilities which one can systematically obtain if, besides the algebra on the D
operators, the commutators [D, Hl are also known. As an illustration of the utility of these sum rules
we discuss some applications to the analysis of the isospin components of the giant resonances in nu-
clei with T=-,'.

In order to obtain these sum rules we first perform an isospin analysis of the photoreactions. For
simplicity we treat the dipole excitation of a target ~TT ), but the same techniques may be applied to
any isovector operator. We start with the formal definition of the transition strength,

f,."=4+~'(0(D'(n)Q(Db(0) ~.,
where a, b =3, +, —; ~0) and (n) are the initial and final states of the target; (u„=E„-E„' and D' =Qm2».

xx;. (For a = b =3 we obtain the electric dipole transition strength; for a =+, 5 = —we obtain the first
forbidden Fermi transition strength. ) So we have symbolically

Xlfan ~a foab(M)R

with obvious notation. In particular we have for q =-1

j(0»/~)dry =4m' (oi O'DDi0).

In order to derive the sum rule it is useful to separate the isoscalar, isovector, and isotensor contri-
butions of f(v,b/cu)des and to express these three parts as functions of the reduced cross sections in
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