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High-temperature series expansions of the spin-spin correlation functions of the plane-
rotator and classical Heisenberg models have been obtained to order (J/kT) '0 on the tri-
angular lattice. An analysis of the moment series provides good evidence for a phase
transition.

Recently considerable experimental and theo-
retical attention has been directed toward two-
dimensional magnetic systems. ' ' Experiments
have shown that very long-range antiferromag-
netic order, completely two-dimensional in char-
acter, exists in K,¹iF,from 97.1 to at least 200
'K.' It has also been rigorously proved that the
two-dimensional isotropic Heisenberg model with
finite-range exchange interactions cannot be fer-
romagnetic or antiferromagnetic, ' Stanley and
Kaplan4 have suggested that a phase transition
may still take place, even though the magnetiza-
tion remains zero in the low-temperature phase. '
Their evidence for a phase transition was mainly
derived from the behavior of the high-tempera-
ture series expansion of the susceptibility of the
Heisenberg ferromagnet on the plane triangular
lattice. Eight terms were then known for the
classical (infinite spin) Heisenberg model, and
six terms for general spin values. Stanley later
found similar behavior for the plane-rotator (or
planar) model on two-dimensional lattices. ' The
classical Heisenberg and plane-rotator models
are described by the Hamiltonian

3C=-JQS 5
(&'J)

where 5; is a D-dimensional classical spin of
magnitude D' ', and the sum is taken over all
nearest-neighbor sites i and j. For the classical
Heisenberg model, D=3, while for the plane-ro-
tator model, D= 2. The plane-rotator model is
of interest as it is expected to have the same
critical behavior as the transition from a normal
liquid to a, superfluid. ' We have found the high-
temperature series expansion gf the spin-spin
correlation function I (r, T) through order (J/kT)'0
for the Ising, plane-rotator, and classical Hei-
senberg models on the triangular lattice. The
two additional terms thereby generated in the
susceptibility series support the original conclu-
sions of Stanley and Kaplan. 4' %e have obtained
what we believe is much stronger evidence for a
phase transition by analyzing in addition the in-

verse moment series of F(r, T). It is possible,
of course, that the interpretation of the series
analysis in terms of a phase transition is incor-
rect." Even if this is the case, the series will
still be of much value for fitting to experimental
data.

The method used in obtaining the series expan-
sion is an extension of the procedure previously
used on the three-dimensional Ising model. "
That is, we used the Englert" linked-cluster ex-
pansion, but completely renormalized in the
sense of De Dominicis. ' '" The computer pro-
gram which is being used at present is only effi-
cient for the Ising model. For the plane-rotator
and classical Heisenberg model, it becomes very
wasteful of computer time because of the large
number of needless repetitions of the lattice
counts for the perturbation diagrams. This de-
fect seems inherent in the method. The advan-
tage of the method is that the human effort re-
quired for the programming is small. The best
chance of obtaining more terms probably lies in
modifying the vertex-renormalized form of the
Englert expansion, previously used by Jasnow
and Mortis. "

The spherical moments of the correlation func-
tion" are defined by

where K= J/kT. The quantities m, "' are the co-
efficients of the usual dimensionless susceptibil-
ity series, while m ' are the coefficients of the
second-moment series. Table I contains suscep-
tibility and second-moment coefficients for the
Ising, plane-rotator, and classical Heisenberg
models for the triangular lattice. In the three-
dimensional versions of these models and in the
two-dimensional Ising model, p. , has a leading
singularity at the critical point of the type

p, -(1—K/K, ) '~""', as K-K„

where Z is the susceptibility index (/ = 0) and v is
the index describing the dependence of the corre-
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Table I. Expansion coefficients of the zeroth and second correlation moments in powers of K on the
triangular lattice.

(0)

Ising

(2)

Plane Rotator

(0) (2) (0)

Heisenberg

30

136

586

2 448. 8

10 021.333

40 364.876

72

580

3 864

22 968.8

126 451.2

658 598.476

30

135

570

2 306

9 041.5

34 582. 125

72

579

3 834

22 520

121 754

619 004. 125

30

134.4

560.4

2 219.726

8 450. 194

31 131.456

72

578.4

3 816

22 250. 126

118 923.154

595 173.861

160 627. 295 3 288 792.229

633 205. 211 15 888 299.814

129 634. 167 3 000 084.417

477 988.033 13 991 240. 117

111 528.736 2 827 401.396

389 998.632 12 869 466. 046

10 2 477 249. 529 74 731 776. 570 1 738 252.392 63 207 887.650 1 335 034.608 56 505 807.622

lation length on (I—KjK, ).'7 If (3) still holds for
two-dimensional systems with a continuous sym-
metry, i.e., the plane-rotator and Heisenberg
models, then we should expect to find that the ra, —

tios of successive terms in the tth-moment ser-
ies (which we shall denote by p«) approach K,
as n —~. Successive ratios from n = 6 to n = 10 of

pp for the Heisenber g model are 3 .8069, 3 .684 1,
3.5825, 3.4968, and 3.4232. Extrapolation of
these ratios against I/n suggests that a finite
limit, around 2.4, is eventually reached. This
was the original evidence of Stanley and Kaplan'
for a phase transition. One cannot help but won-
der whether with more terms the value K, '= 0
might be obtained, especially in view of the rapid
decrease in the values of the ratios.

Before discussing evidence against this hypoth-
esis we remark that, in contrast to the ca.se of
the two-dimensional Ising model and the three-
dimensional versions of the plane-rotator and
classical Heisenberg models, the coefficients in
the series expansion of I"(r, T) for the plane-ro-
tator and Heisenberg models are not all positive.
Table II gives their values to the nearest-neigh-
bor site. In general, the coefficients are all neg-
ative beyond the sixth or seventh nonvanishing
term to a given site, at least to the order we
know them. The series to the more distant sites,
for which we have less than six nonvanishing
terms, have positive coefficients and closely re-
semble those of the Ising model. The more dis-
tant sites make a large contribution to the sec-

Table II. Expansion coefficients of I (r,T) at the
nearest-neighbor site.

Ising Plane rotator Heisenberg

10

1
2

3.666 667
6.666 667

14.133333
36.088 889
98.879 365

277.206 349
798.159 436

2 360.482 821

1
2

3.5
5

5.833 333
4.666 666

-5.062 500
-52.347 222

—229.390 278
-782.100 001

1
2

3.4
4

0.754 286
-14.08

-61.523 429
—200.875 102
-577.065 588

-1462.243 658

ond-moment series, and a smaller contribution
to an inverse (f, ( 0) moment series, due to the r'
weighting factor. Conclusions about the exis-
tence of a phase transition based on the behavior
of t ~ 0 moment series are necessarily suspect,
since they contain less of the information in the
spin-spin correlation function which is distinc-
tively non-Ising. The same cannot be said of the
inverse-moment series, which stress the contri-
butions from sites near the origin, and the ser-
ies with negative coefficients. It is shown below
that analysis of the inverse-moment series yields
values for K, compatible with those derived from
the positive-moment series. Ne believe this con-
stitutes strong evidence for a phase transition.

The ratios p, of the plane-rotator model for t
= —1.75 are, from n = 6 to 10, 2.8063, 2.8067,
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FIG. 1. Linear extrapolants of various moment se-
ries of the plane-rotator model. The turn-up seen in
the last two terms suggests that 7.'~ is bounded away
from zero.

2.7930, 2.7842, and 2.7860. Notice that the last
term does not follow the usual trend of ever de-
creasing estimates for K, '. This change in di-
rection is more clearly seen on studying the lin-
ear extrapolants l, , defined by

f~a &&r a (& 1)pt az. (4)

Figure 1 shows a plot of /, vs 1jn(n —1) for a va-
riety of values of t. (It is logical to extrapolate
in this fashion if p, can be developed in a power
series in I/n. ) Moment series with both positive
and negative t values extrapolate to roughly the
same value of K, ', around 3.15+0.10. For val-
ues of t close to —2, the turn-up starts to disap-
pear. Extrapolation with the aid of a Neville ta-
ble, "which automatically allows for curvature
in the plot, suggests that with only slightly long-
er series the same value for K, ' would still be
obtained. A hint of similar behavior can be found
in the series for the Heisenberg model. That on-
ly a hint can be found is because the series for
the Heisenberg model are more like those of the
spherical model than are the series for the plane-
rotator model. ' The spherical model does not
have a phase transition in two dimensions, a fact
reflected in the behavior of the susceptibility ser-
ies. The turn-up also suggests that every coef-
ficient in the susceptibility series of the plane-
rotator model could be positive, in contrast to
the case of the spherical model whose suscepti-
bility coefficients oscillate in sign irregularly be-

yond the 13th term. '
In conclusion, the evidence from moment ser-

ies for a phase transition in the plane-rotator
model is as strong in two dimensions as it is in
three. Assuming that a transition does take
place, and that (3) is valid, we find that for the
plane-rotator model, y= 3.0+ 0.5 and v= 2.0'0",.
We do not believe the series are yet long enough
to estimate the indices of the Heisenberg model.
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