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A simple model for a new instability resulting from particles trapped in a large-ampli-
tude electrostatic wave is invoked to explain the generation of satellite frequencies in a
recently reported experiment by Wharton, Malmberg, and O' Neil. The model predicts
satellites on the large-amplitude wave at a frequency separation proportional to v&,
where 8 is the amplitude of the large wave. The predicted growth rates reasonably ac-
count for the observed growth of these satellites.

In a recent paper, Wharton, Malmberg, and
O' Neil' describe the excitation of large-ampli-
tude plasma waves by means of a probe immersed
in a plasma having an electron temperature of
9.4 eV, an electron density of 5&&10' cm ', and
relatively cold ions. Apart from observing the
reduction in the damping rate for large-amplitude
waves predicted by O' Neil and Al'tshul and Karp-
man, ' the experiment also showed the growth of
sidebands to the frequency of the large-amplitude
wave. The frequency separation of these satellite
bands was found to be proportional to the square
root of the wave amplitude. This indicates that
trapped particles bouncing in the potential trough
of the wave at a frequency u~ = (eEk/m)'~' (E is
the wave field, k the wave number) must play an

important role in the generation of these side-
bands. In addition, a broadening of the frequen-
cy of the large-amplitude wave was observed.

We propose the following explanation for these
observations. A significant number of particles
are trapped in the trough of the wave due to its
large amplitude. Because the electrostatic fields
are largest in the vicinity of the probe, most of
the trapping takes place there. These particles
then move with the wave, with a mean velocity
equal to its phase velocity. The trapped particles
oscillate in the wave trough. The frequency of
this oscillation is roughly constant for a large
number of the trapped particles, varying only a
few percent for all those particles trapped within
—,
' of a wavelength (+30 ) from the bottom of the
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trough. Thus, these particles should be able to act coherently (like a beam) and we might expect
something similar to a two-stream instability. We propose that this instability is responsible for the
sidebands observed by Wharton, Malmberg, and O' Neil.

To investigate the possibility, we approximate the trapped particles by using a bunched beam of
harmonic oscillators. For simplicity, we assume that the particles have a commom oscillation fre-
quency and that they are grouped at the bottoms of the wave troughs. The equation of motion for such
an oscillator, perturbed by an electric field (not the electric field of the large-amplitude wave), is

e «E(k& (d&)e ik x~ —iv t

(t) =-~z'(x -x -g t)-—' ', „dk'de'.
Pl ~ (21T)

Here vp is the phase velocity of the large-amplitude wave, x —x~,-v~t is the position of the oscillator
relative to the nth trough, cu& is the oscillator frequency and the bounce frequency in the large wave,
and E(k, w) is the Fourier amplitude of the perturbing field. (&u~ mocks up the effects of the E field
associated with the large-amplitude wave. ) Fourier analysis in time of the displacement of an oscilla. -
tor $ (t) =x (t) x„;-u~t gives

~ 1
e "E(k', a+k'n, )e'

m((d —(dye ) ~ 27'
(2)

Fourier analyzing and summing over all such
oscillators, we obtain

p(k, u) =ikey N„e ' ~'$„((u kvz), —(4)

where $ is the Fourier-analyzed perturbed posi-
tion evaluated at x-kv~, and N~ is the number of
trapped particles in the nth wave trough. Treat-
ing the background plasma as a continuous medi-
um with dielectric function ei (k, &u), we have

from Poisson's equation

ikeL (k, u))E (k, ~) = 47' p(k, (u). (5)

introducing (2) and (4) into (5) and using the iden-
tity'

h.g ei(i'-i~»o-g 5(k& k ~k, )
7T

To derive a dispersion relation we demand that
the electric field produced by the perturbed mo-
tion of the oscillators be consistent with the field
perturbing the oscillators. The charge density
due to the (assumed small) perturbation of an os-
cillator is

8
p, (x, t) =e&,(t) &(x-x„-—vent).

Equation (6) represents a coupled set of equa-
tions for the Fourier amplitude of one mode in
terms of the Fourier amplitudes of other modes.
We simplify this set by observing the following.
The plasma does not support wave-type solutions
for x greatly different from the plasma frequen-
cy, &u~. For ~ = ~~ (where we expect the plasma
to oscillate), the two dominant waves are E(k, &u)

and E(k-2k„+-2~,). The frequency of the large-
amplitude wave is ~, (also nearly &u~). Keeping
only these two terms, we obtain two coupled
equations for E(k, ur) and E(k-2k„&u-2&v, ). The
condition for a solution to exist is that the deter-
minant of their coefficients vanishes. The result-
ing dispersion relation is

2 1

~ —~gy &i (k, (d) ei (k-2ko, (u-2&go)

To investigate this dispersion relation we

adopt the warm-fluid approximation for ai (k, e),
the dielectric function of the background plasma:

2

ei (k, ~) =1-+'-3k'v z-' '

we readily obtain

+ r' +E(k +nzk„u'+I vo)
0 N~ m EI(k, N)

In the above, X, is the wavelength of the large
amplitude wave, k, = 2m/~„~T is the plasma fre-
quency of the trapped particles (treating them as
being spread out over a wavelength), and &u,

= koup.

where vT is the thermal velocity of the back-
ground plasma. The dispersion relation then re-
duces to a polynomial. The roots of this poly-
nomial are obtained numerically by the Newton-

Raphson iterative technique. Results for param-
eters typical of experimental values are dis-
played in Figs. 1 and 2.

There appears an instability near (do and kp.

The growth rate as a function of k is shown in

839



VOLUME 23, NUMBER 15 PHYSICAL REVIKW LETTERS 13 OcToBER 1969

1.16
cu, y,

14 duo yp
—= 0.07

(upi 1. 12 (dO

I.IO—

1.08—

I

0 I i I I

.90
I

1301.0 1.10 1.20

kp k I +p / yp)

FIG. 1. Growth rate and frequency as functions of
wave number.

Fig. 1. It forms a double-humped curve about k, :
On each side of k, it rises rather sharply from
zero to a maximum and then falls off abruptly.
The frequency as a function of k is given by the
upper curve in this figure. We interpret the
rather sharp maxima in the growth rate as pro-
ducing the upper and lower sidebands observed
in the experiment.

The upper curve in Fig. 2 shows the growth
rate as a function of the bounce frequency. These
growth rates reasonably account for the observed
production of the sidebands. For example, in the
experiment for ~z = 0.07~, and v T

= 0.26v~, . the
sideband grew by a factor of 10 in a time of
roughly 225~& ', giving y= 5&&10 '~z. This
compares favorably with this model's prediction
of y= 8x10 'w~. Furthermore, the slight growth

rates of adjacent frequencies in our model can
account for the observed "fuzzing" of the frequen-
cy of the large-amplitude wave.

The lower curve in Fig. 2 gives the frequency
separation of the sidebands from the large-ampli-
tude wave. This frequency separation is reason-
ably linear with the square root of the large-
wave ampli'ude in agreement with experiment.
However, the magnitude of this frequency separa-
tion agrees only roughly with the observations.
The experiment yields a separation about equal
to the bounce frequency of the electrons in the
large-amplitude wave. The experimental uncer-
tainty in this mea, surement is about 40%, since
the electric field amplitude is measured to within
a factor of 2. For the experimental parameters,
our simple model yields a frequency separation
of about 35% of the bounce frequency. We do not
believe that this is a serious discrepancy, since
it can be explained by incorporating the finite
size of the plasma and making allowance for the
uncertainty in the number of trapped particles.

For comparison with the experiment we can
only estimate the number of trapped particles,
which we have done by using the undisturbed
Maxwellian distribution and the experimentally
measured phase velocity and wave amplitude.
Reasonable uncertainties in these parameters
lead to a roughly 10-20% uncertainty in the fre-
quency separation predicted by our simple model.

More important is the finite size of the plasma
in the real experiment. Our analysis has as-
sumed an infinite uniform plasma. In the experi-
ment the wavelength of the large-amplitude wave
is about 2.5 cm while the effective radius of the
plasma is about 1 cm. To incorporate the role
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FIG. 2. Growth rate and frequency separation as functions of the bounce frequency.

840



VOLUME 23, NUMBER 15 PHYSICAL RKVIKW LKTTKRS 13 OcToBER 1969

R is chosen to give a good fit of this function to
the experimentally determined dispersion rela-
tion in the neighborhood of ~, and k,.

Figure 3 exhibits the results for the parame-
ters of Fig. 1. The sideband structure is still
evident, but now the two peaks are more distinct-
ly separated. It is readily seen that the frequen-
cy separation is significantly increased; it is
now 60% of the bounce frequency, if one chooses
the peak growth rate, and even larger if one
takes a farther separated wave as characteristic
of the broader band of unstable waves. The
growth rates, on the other hand, are roughly 20%
greater than the infinite-size example.

We note that our simple model predicts a side-
band on both sides of the central frequency in
agreement with the experiment. However, we
understand' that the upper sideband was some-
what suppressed relative to the lower. Landau
damping may account for this suppression. The
upper sideband has a phase velocity less than
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FIG. 3. Growth rate and frequency as functions of
wave number (finite size system).

of the finite size we mocked up the experimental-
ly determined dispersion relation' with a very
simple relation,

2

eFI. (k, &u) =1-
(8 -3k gT

where the effective plasma frequency is defined
by

A, 2R2
2= 2

P«f P 1+y2R2

that of the large wave (larger ~ but even larger
k), while the lower sideband has a larger phase
velocity (lower ~ but even lower k). Of course,
the Landau damping may be strongly influenced
by the large-amplitude wave, so this aspect
should be more throughly investigated.

Finally, we have investigated this instability
in some detail with computer experiments on the
one-dimensional sheet model. ' These results,
in reasonable agreement with both the real ex-
periment and the simple calculation, will be pre-
sented in a forthcoming paper. Qoldman has re-
cently obtained this instability via a more gener-
al formalism. ' His treatment is very valuable
for exploring this instability under more general
conditions.

In conclusion, we have presented a simple mod-
el which by no means exhausts this problem.
However, we have been able to incorporate in a
simple physical model the role of particle trap-
ping, and to predict the essential features of ex-
periment. We believe that the physical insight
derived from this simple model can facilitate the
inclusion of trapping effects in more detailed
treatments.
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