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SIMPLE PROOF AND GENERALIZATION OF GRIFFITHS' SECOND INEQUALITY

J. Ginibre
Laboratoire de Physique Th6orique et Hautes Energies, 91 Orsay, France*

(Received 22 August 1969)

A recent generalization by Sherman of Griffiths' second inequality on correlations in
Ising ferromagnets is further generalized. Straightforward proofs are provided both for
the original inequality and its generalization.

Recently, Griffiths' obtained remarkable in-
equalities for the correlation functions of Ising
ferromagnets with two-body interactions. These
inequalities were subsequently generalized by
Kelly and Sherman to systems with interactions
involving an arbitrary number of spins. ' The sec-
ond inequality, described below as theorem 1,
was then generalized by Sherman. ' These in-
equalities have received several applications of
physical interest. They have been used to prove
the existence of the infinite-volume limit for the
correlation functions of Ising ferromagnets, ' to
obtain upper and lower bounds on critical tem-
peratures, ' to settle the question of the existence
of a phase transition in one-dimensional systems
with moderately long-range interaction, ' and to
establish rigorous inequalities on critical-point
exponents. ' Their possible extension to systems
other than Ising models is under active consider-
ation. '

It is therefore of interest to have derivations
of the basic inequalitites that are as transparent
as possible. In the present paper, we first give
a completely straightforward proof of the second
inequality, and then a further generalization of
Sherman's later result.

We consider a finite set A of N sites. Each
site carries a spin 2, that is a finite set with
two elements called up and down. A configura-
tion of the system is defined by the set of down

spins, which is a subset of A. Configurations
are denoted by capital letters A. , B, A, S, etc.
The set of configurations X' is a finite set with
2 elements. The product AS of two configura-
tions is defined as their symmetric difference
AdS=AU S-AA S. With this product, I" is a
commutative finite group. The unit element is
the empty set Q and every element is of order 2:

geo s 0'as&

va(A) va(B) = va(AB),

va(&) = v~(f~) =(-1)'
(2)

(3)

where n(A) denotes the number of sites in R. A

physical system is defined by a potential J,
which is a real function on I', and with which are
associated, respectively, a Hamiltonian, a prob-
ability density, a partition function, and correla-
tion functions by the formulas

(4)
Pal

W =Z 'exp(-B),

Z= Q exp[-a(P)],

(5)

(6)

Ae I'

We consider exclusively ferromagnetic systems,
by which we mean that J(A) ~ 0 for all Aef'.
Griffiths' first inequality states that in this case,
for all HEI',

(va& -0. (8)

We now turn to the second inequality.
Theorem 1."—For all 8 and S in I', the follow-

ing inequality holds:

(vas&-&va)&vs& - o

Proof. —From (7), we obtain

R = g With spin r is associated a function v,
which is 1 for up and -1 for down. The spin
products

va= II v~
zeR

are functions on I'. In fact, they are the charac-
ters of the group I". They satisfy

((vas) (va)(v$) ) Q [va$(+) va (&)vs(B) ]exp [—B(&)—B(B)].
A,B

Let C =AB. Using (1), (2), and (4), we obtain

=+v[1-vs(C) ] Iggvas(A) exp Qp&(P) [1+vp(C) ]vp(A)

(10)

The first factor is positive. For fixed C, the quantity in the last brackets is, up to a positive normal-
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ization, the average of the spin product 0~~ in a new ferromagnetic system associated with potential:

J,(~) =Z(~)[I+o (C)]-O.

The average is positive by Griffiths' first inequality (8), and the theorem is proved.
We now present a more general result.
Theorem 2. —The functions ~~q and p~ defined by

p. (B) =&.&& .&,

~~,s(B) = &oa&&&ms& &oa~&(-&as&,

(12)

(Is)

(14)

are positive-definite functions of 8 for arbitrary fixed I', A, and S in I'.
We recall that, by definition, a function f on I' is positive definite if for any complex valued function

z on I", the following inequality holds:

Q z(A)f(AB)z(B) ) 0

and that, by Bochner's theorem, a function f is positive definite if and only if its Fourier transform is
positive. '

Proof of theorem 2. —It is sufficient to prove that the Fourier transforms pp and Co~& defined below

are positive:

p/(T) = g oz'(B)(oa&(o p&
Bel

(i8)

Bs(T) = Zor(B)(&oa&(ops&-&oaB&&&as&).

From (16) and (17), we obtain

~~s(T) = [I or(B)]P~s(-T) = [I-or(~)]P~s(T)

It is therefore sufficient to prove that pz is positive. From (7), (16) we obtain

pp (Q = Q Ga(pea(C) oa(A) op(A) W(A) W(C).
A,B,C

We sum over 8, using the orthogonality of the characters:

pp(T) = 2 Qgvy (A) W(A) W(AT) = 2 Z Qga~(A) exp(go J(Q) [1+o'o(T)]o'o(A)).

(17)

(i8)

(2o)

Up to positive normalization factors, the last sum is the average of 0~ in the new ferromagnetic sys-
tem associated with the potential J r defined by (12), and is positive by (8). This proves theorem 2.
We now collect a few properties of ~~s, which follow easily from (8), (18), and (20).

Corollary 1.—The function ~~s defined by (17) has the following properties: (a) ~~s(T) = 0 unless

vr(R) = or(8) = -1. (b) Z'&u~s(T) does not depend on the values of &(Q) for those Q for which vo(T) = -1.
(c) For all R, S, T, and Q in I and all n ~ 0, the following inequality holds:

s [~'-~;(T)1/s&(@)" -0. (21)

Applying (15) to the function ~~s, taking z to be the characteristic function of a subgroup I", of I', we

obtain the result of Ref. 3.
Corollary 2. -For any subgroup j."p of I and any A, S in l"

(22)g (& )( &-& && &) - o.
H~I 0

In particular, for I', =Q&), we recover theorem l.
I am indebted to Professor S. Sherman for sending a copy of his paper prior to publication, and for

correspondence.
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I IQUID STRUCTURE FACTOR OF He~ BY X-RAY SCATTERING
AT SMALL MOMENTUM TRANSFER~
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The liquid structure factor of helium-4 has been determined in the momentum-trans-
fer range 0.2 to 0.8 A ~. At 0.32 K the structure factor exhibits a gentle but decided

0
change Of slope near 0.4 A in qualitative agreement with certain theoretical predic-

0
tions. Below 0.4 A the liquid structure factor agrees with that deduced from the Bijl-
Feynman dispersion relation. At 4.99 K and 680 mm pressure we have shown that heli-
um gas is distinctly nonideal.

S(k) =ak j2Mc„

where c, is the velocity of first sound in liquid

(2)

We have measured the intensity of copper Kn
x rays scattered from helium-4 as a function of
«atte»r'g a.ngle both in the gas phase near 5 K
and in the liquid phase at several lower tempera-
tures. By normalization against neon at 77 K,
structure was observed in the helium gas and a
determination of the structure factor of the liquid
was made. At. 0.32 K the liquid structure factor
shows a gentle but decided change of slope near
the momentum transfer 0.4 .4 '. This gentle
shoulder is in qualitative a,greement with the
shoulder suggested by Miller, Pines, and No-

zieres, ' but is much weaker than the shoulder
~mven by Massey. ' The liquid structure factor in

0

the range 0.2 to 0.8 A ' is in good agreement
with a recent calculation by Campbell and Feen-
berg. ' Our measurements disagree somewhat
with those of Gordon, Shaw, and Daunt and also
with those of Achter and Meyer. '

The Bij1-Feynman dispersion relation'

E(k) = k"k /2~$(k),

where S(k) is the liquid structure factor, k the
momentum transfer, and M the mass of helium

atom, relates the energy of an elementary exci-
tation in a condensed Bose system to the liquid
structure factor at absolute zero. If the excita-
tions are phonons, we expect

helium.
It has been shown" that for finite temperatures

the structure factor in the limit of vanishing mo-
mentum transfer can be written as

lim S(k) =S(0)=nksTXr,
A o

where n is the number density, kB the Boltzmann
constant, and X~ the isothermal compressibility.
Experiments to date in the momentum transfer

G

range below 0.8A ' indicate in some cases~
that S(k) approaches the expected value of nksTXT
as 0-0. In other experiments" abpve 0.8 A
the extrapolated values of S(0) are in close agree-
ment with (3) although the extrapolations them-
selves are open to errors. In all of these inves'-

tigations the structure factor was seen to be in-
sensitive to changes in temperature for values of
the momentum transfer greater than about 0.8
A '. This led Jackson" and independently Miller,
Pines, and Nozieres' to notice that the experi-
ments did not ext"apolate correctly to (2). Mil-
ler, Pines, and Nozieres suggested that if the
data down to 0.8 A ' were valid at temperatures
near absolute zero, then a shoulder should ap-
pear on the structure factor curve in the momen-
tum transfer range where the expected linear de-
pendence "joined up" with the measured struc-
ture factor. We have investigated the range 0.2
0 0

A ' &k & 0.8 A ' in some detail at temperatures
as low as 0.32 K to study this problem.
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