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(~((0)~z ')„=0.74 gives a range for the ratio of
0.418 to 2.541, easily bracketing the measured
value on the first zone.

A complete discussion of the method of analy-
sis and the results of the entire field- and tem-
perature-dependent study of 0 in Cd are to be re-
ported later.

The authors wish to thank Professor L. M. Fal-
icov for several helpful discussions.
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Measured energy distributions of photoemitted electrons from K, Rb, and Cs show a
high-energy peak identified as unscattered {primary) electrons, and an intermediate
peak at somewhat lower energies which is believed to be due to a plasmon energy loss.
This intermediate structure becomes more pronounced and closer to the primary peak
on proceeding from K to Rb to Cs. This systematic trend, together with the absence of

any clearly discernible intermediate structure in Na, is consistent with the variation of

the corresponding plasmon energies. In Rb and Cs the intermediate peak is sufficiently
pronounced to permit its identification as a surface rather than a volume-plasmon exci-
tation.

The electron-electron interaction has an im-
portant influence on the photoemission process. '
The photoemission process is conventionally en-
visaged in three distinct steps: (1) optical exci-
tation of electrons in the interior of the material,
(2) transport of some of these electrons to the
surface, and (3) escape across the surface. In
the transport to the surface, the excited elec-
trons are quite likely to suffer an inelastic scat-
tering event before they can escape into the vacu-
um. Scattering by electron-electron interactions
is believed to be the dominant process, and the
scattering length is a rapidly decreasing function
of energy. ~ The number of electrons which es-
cape without scattering (primary electrons) is

therefore severely diminished. Moreover, elec-
trons which have undergone an inelastic scatter-
ing event may still be sufficiently energetic to
surmount the potential barrier at the surface,
and escape from the material as slower second-
ary electrons. It is these secondary photoelec-
trons which will concern us here.

An excited electron may decay through the elec-
tron-electron interaction by either of two basic
mechanisms, pair creation or plasmon creation. '
We include in the latter both surface- and vol-
ume-plasmon losses. The energy distribution of
secondaries is expected to differ for these two
mechanisms. The contribution to the energy dis-
tribution curve (EDC) due to secondaries pro-
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bears some resemblance to the 7.8-eV curve for
K, but on an expanded energy scale. VYe are pre-
sumably looking at Na at a much earlier stage in
its evolution. This and the other systematic
trends all appear to be in order. In Cs there is
evidence of an additional piece of structure at en-
ergies just below the prominent intermediate
peak. This is quite possibly a two-plasmon ener-
gy loss.

Ne conclude that the intermediate structure
which we have observed in the EDC of alkali met-
als can be understood in terms of a plasmon en-
ergy loss. The structure is quite reproducible
between different samples, which were thick
evaporated films, and is independent of substrate
material. The energy separation of the primary
and secondary peaks, where it can be measured,
leads us to prefer a surface- rather than a vol-
ume-plasmon mechanism.

The assistance of Galen Fisher in this work,
as well as profitable discussions with John En-
driz, is gratefully acknowledged.

FIG. 3. Photoelectron energy distribution curves at
~ico=10.2 eV for Na, K, Rb, and Cs, plotted against',
the kinetic energy in vacuum.

cesium. The intermediate peak has also been
seen in rubidium and is more pronounced than in
potassium but less pronounced than in cesium.
In sodium no intermediate peak can be clearly
discerned.

Figure 3 shows the EDC at h~ = 10.2 eV for
each of the four metals. The horizontal bars
represent the magnitudes of the plasmon ener-
gies as determined by Kunz. ' The full bars rep-
resent the surface-plasmon energies and the
broken bars represent the volume-plasmon ener-
gies. It can be seen that the separations of the
primary and intermediate peaks in cesium and
rubidium agree quite well with the surface-plas-
mon energies; the volume-plasmon energy is
definitely too large. In potassium the intermedi-
ate peak is too broad to permit any definite deci-
sion between surface and volume plasmons. The
absence of any clearly discernable intermediate
peak in Na is consistent with the larger plasrnon
energy for this metal. The low-energy peak in
the Na EDC is noticeably wider than in the other
metals. It is possible that there is an intermedi-
ate peak but that it is sti11 buried in the low-en-
ergy peak. In fact, the 10.2-eV curve for Na

*Part of this work was performed while one of the
authors (NVS) was a research associate at Stanford
University, and part while on assignment at Stanford
University from Bell Telephone Laboratories. The fa-
cilities used at Stanford are supported in part by the
Advanced Research Projects Agency through the Center
for Materials Research at Stanford University and by
the National Science Foundation.
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The concentration-dependent static dielectric constant is calculated for degenerate n-
type G.-Sn. The anomalous enhancement of the low-temperature and low-concentration
electron mobility is explained.

The static dielectric constant e(q) of o. -Sn has been shown" to go to infinity like A.jq as q-0. This
infinite dielectric constant in a semiconducting material is a consequence not only of the zero gap in
the one-particle energy spectrum but also of the fact that the degeneracy of the band edge is symme-
try induced. In any actual sample of n-Sn, however, the presence of impurity carriers is sufficient
to remove this 1/q infinity. instead, the intraband excitation contributes a term k„r /q to the dielec-
tric constant, where kF& is the Fermi-Thomas momentum. The interband part is now finite but is ex-
pected to have a strong dependence on the impurity concentration. This dependence is absent in a nor-
mal semiconductor.

In this paper we determine the concentration-dependent dielectric constant in a degenerate n-type
sample of n-Sn. This calculated dielectric constant is used to evaluate the electron mobility at low

temperature where impurity scattering is the dominant mechanism. The results are in excellent
agreement with the experimental mobility values at 4.2'K. ' ' Also included in the discussion are some
general remarks about the dielectric constant in other zero-gap materials.

The calculation of the dielectric constant is based on the random phase approximation (RPA) expres-
sion' for e(q) of a solid:

4«'~ l&k, ~le "''lk+q, &')I' ~
~k+q, a' ~k, n

r rj' I~

where the Bloch state
I
kn) labeled by the reduced wave vector k and band index n has energy E» and

occupation number N-„, . The concentration-dependent interband polarizability 4m+'"'" for doped sam-
ples comes from the coup1ing between those filled valence and empty conduction states which are close
to the band edge. This part we evaluate in detail. The contribution from all other states is taken to be
a constant &0 whose value is known' to be 24.

To evaluate o""'", we use the k p value for the matrix element obtained by Liu and Brust':

where 0 is the angle between k and q. For the energy differences, we assume spherical conduction
and valence bands with effective mass values m, * and m~*, respectively, and neglect the ratio rn, */
mz* compared with unity. For a-Sn, where m, */mq* -0.1, this is a good approximation introducing


