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Hesults are presented which show the classical anharmonic resonance effects (includ-
ing hysteresis) on a marginal ion sound instability, when forcing at the fundamental and

the subharmonic frequencies. Also, when the instability is well defined it appears to be-
have as a classical Van der Pol oscillator for drive frequencies near the fundamental
and the subharmonics.

There has been considerable interest in the
last few years' ~ in the nonlinear mechanisms
which determine the saturation level of a self-
excited oscillation (or instability) present in a
plasma. Anharmonic effects, ' mode-mode cou-
pling, ' ' and wave-particle scattering' have been
proposed as possible mechanisms in various
cases. In particular, the mode-mode coupling
approach appears to give rise to the plasma in-
stability behaving as a classical Van der Pol' os-
cillator. We have obtained further experimental
evidence that for an ion-sound instability in two

different regions the instability behaves (a) as a,

classical anharmonic oscillator and (b) as a clas-
sical Van der Pol oscillator.

Theory. —The instability considered in this case
was an m =0 ion-sound instability, and the prob-
lem has been investigated using the two-fluid ap-
proach in sla,b geometry. The axia. l magnetic
field 8, is taken along the ~ direction, and only

spatial variations of the form e' z are const
ered, where k is the axial wavelength of the
sound instability. The density n is considered of
the form n =n, +n„where n, is the zero-order
density and n, the perturbed value, and y, and v,
are taken as the potential and ion-velocity per-
turbations, respectively. The z component of the
electron equation of motion reduces to the form
n, /no = cp, (k T,/e). The ion equation of motion
gives

dt (l)

where v is the ion-neutral collision time and M;
the ion mass. The equation of continuity is given
by

(dn/dt)+ vt. (nv, ) =S, ,

where 8; is a source term due to ionization, etc.
caused by large-amplitude oscillations present in
the plasma. This source term is taken to be of
the form

2 3S; =nn, -Pn, -yn, ,

where yn, '«Pn, «n «(u, =k c„and c, =(kT,/
M;)"' is the ion-sound velocity. After eliminat-
ing v, between (1) and (2), substituting for S;
from (3), and including an external drive term of
the form A sin~t, the equation reduces to

d2
2'+ ' [v-a+2pn, +Syn, ]+&so n,

=&so A sinurt-vpn, -vyn, 3.

This equation may be considered in two situa-
tions:

Case (a). -When v& a, that is, when the self-
excited instability is damped out, then the equa-
tion is of a standard anharmonic forced-reso-
na.nce type, which can be written as

+ cu, n, =f n„+v, A sin(et,

where

V-O. +2 n, +3yn, ' -V n, '-yVn, 3.

A trial solution is assumed of the form n, =b
&icos(&et+ g), where g is a phase angle and m is
close to ~„and upon substitution Eq. (5) re-
duces to a cubic equation in b2 correct to second
order. Let &u =(&so+ e), where e «uro, and con-
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sider the case where y b' «v. Then the equation
becomes

(c)

Sya =2a(2n-Syb ),

b((do -(d~ ) =AQpo cosg,

Sy(b~+ 2ba2)w-4nb&u =4A&uo sing.

(8)

(9)

(»)

b2$ 2

b 2E g vp —+ p =03
(d 0

0

The real roots of the cubic in b' give the ampli-
tude of the forced oscillations as ~ is varied
through zero. %hen A is fairly small, b is fairly
small and we have a symmetrical resonance
curve as shown in Fig. 1(a) with a maximum at
~=0. As A increases the curve changes its
shape, but retains its single maximum which
moves to positive e, as in Fig. 1(b). When A
reaches a certain value A, the nature of the
curve changes; then Eq. (8) has three real roots
corresponding to the region BCDE in Fig. 1(c).
The limit of this range is determined by db/de
= which holds at the points C and D. It may be
shown that the dashed part CD corresponds to
unstable oscillations, and any small perturbation
of the system causes the system to jump from
the state C to E or 8 to B. Hence, if the fre-
quency is gradually increased from A the path
ABC-EI' is followed, and if the frequency is
decreased starting from I' the path I FD-BA is
followed, thus showing the hysteresis effect.
The maximum amplitude occurs at db/de =0 and
is given by b,„=~+/v.

Similarly, if the subharmonic drive proportion-
al to B sin-', (e, + e)t is employed, an equation sim-
ilar to Eq. (8), where A is replaced by 8PB'/9tu, ',
is obtained, and the maximum is now given by
b,„=8PB'/9vv, which is proportional to B'

Case (b).—Consider the case in Eq. (4) when
v-0, then the instability is self-oscillatory and
the equation is given by

d
d)2 dg

[n-2Pn, -Syn, ]+(,n,

=A
ciao sin(d t (7)

which is just the Van der Pol"'' type of equa-
tion. Here a trial solution of the form n, =a
x sin&rot+ b sin(tot-g) is adopted, where both a and

b are functions of time, but such that (u,a» da/
dt and &ub» db/dt, and that d2a/dt 2 and d b/dt 2

are negligible. Higher harmonics and sum and
difference terms are neglected, and so substitut-
ing into Eq. (7) the following equations are ob-
tained:

I

Synchr onization,
I I

OlI
Frequency

FIG. 1. Theoretical predictions for the behavior of
the plasma instability. See text for explanation of (a),
(b), (c), (d), and (e).

b' = —,'a, ' = 2n/Sy. (12)

Figure 1(d) shows the relationship between a,
the amplitude of the free vibration; 'b, the amp»-
tude of the forced vibration; and the applied fre-
quency m. The limits of frequency A —C show
the region over which synchronization between
the impressed frequency and the internal oscil-
lation occur. Outside this region "beats" are ap-
parent. Figure 1(e) shows how the "beat" fre-

From Eq. (8) it is seen that in the absence of
the driving force the amplitude of the force vibra-
tion is given by

a,' = 4n/S y.

If, however, the impressed driving force is pres-
ent and of sufficiently high amplitude that b in-
creases to a value such that the coefficient of a
in Eq. (8) is negative, the self-excited oscillation
of frequency ~0 is suppressed. This takes place
when
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quency should vary with applied frequency +.
The extent of this region of synchronization may
be calculated by considering Eqs. (9) and (10) for
the conditions when the free vibration is sup-
pressed:

f 2(~ 2 ~2) y ~2f 2( 3 yb2 ~)2 A2~ 4.

and using the value of b at which synchronization
starts and stops from Eq. (12), the synchroniza-
tion region Ace is given by

&u = 2 x'aA&u, /a, .
Thus the region of synchronization, or "silent
period, " is proportional to the driving amplitude
A.

In the same way as in ca.se (a), if we apply a.

signal at a frequency near 2t' ', of amplitude pro-
portional to 8 sinai, t it is necessary to replace
A by a, term 8PB'/9&v, ' in Eqs. (9) and (10), and

in this case the "silent period" dc@ is proportion-
al to B'.

Experimental. —The experiment was performed
in the positive column of a neon arc discharge
with a mercury-pool cathode. The are was run
at a constant current of 2 A in an axial magnetic
field of 200 G, and this gave a peak density n, -3
&10 ' cm ' and a constant temperature T, =7.0
eV. The nature of the instability was determined

by using radially moving probes, either to mea-
sure floating-potential perturbations, or ion bi-
ased in order to measure density oscillations.
Axially moving photodiodes were employed to de-
termine the axial wavelength. The instability
was found to have predominantly a single fre-
quency independent of magnetic field of 7.5 kHz

with an m =0 azimuthal mode number and an axi-
al wavelength & =80 cm. This corresponds to a
velocity of 6.0&10' cm, compared with the ion-
sound velocity c, =(0T,/M, )"2 = 5.8 &&10'.cm/sec.
Therefore, since the instability appeared to be
independent of axial magnetic field and peak den-

sity, it was identified as an ion-sound instability.
Externally applied signals were coupled to the

plasma by four magnetic coils spaced azimuthal-
ly at equal intervals around the discharge col-
umn. The plane of each coil was such that they
produced an in-phase azimuthal oscillating mag-
netic field Se in the plasma, which by virtue of
the I5e &&K,] drift produced an oscillating axial
velocity v in the plasma (here E, is the zero-
order radial electric field in the plasma). By
varying the drive current I, to these coils the
amplitude of the induced velocity (or density)
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FIG. 2. Experimental amplitude of instability for
drive frequency near 2~0. Coil drive currents I~ are
the following: (a) 3 A peak to peak, (b) 4 A peak to
peak, and (c) 5 A peak to peak.

perturbation in the plasma could be changed.
Case (a): instability marginal. —By increasing

the neutral pressure in the discharge the ion-
neutral collision frequency v was increased such
that the instability was just damped out. Then
by using a low driving current (I, =3 A peak to
peak) near the frequency 2(o, the curve for the
amplitude of the instability shown in Fig. 2(a)
was obtained. At a drive current of 4 A the
curve shown in Fig. 2(b) was obtained, and it is
seen that the resonance curve is now asymmetri-
cal with the maximum shifted to a higher fre-
quency. %hen the drive is increased to 5 A peak
to peak, the curve shown in Fig. 2(c) was ob-
tained, and it is seen that as the frequency is
gradually increased the path indicated by the
open circles is followed, whereas when the fre-
quency is decreased the path indicated by the
crosses is traversed. Therefore, a hysteresis
effect is found as indicated by the theoretical pre-
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FIG. 3. Experimental behavior of (a) the instability amplitude and the drive amplitude in the plasma, and (b) the
"beat" frequency, for a drive frequency near ep. (c) Drive amplitude and instability amplitude. (d) Beat frequenc
for the subharmonic drive near 2+0.
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dictions shown in Fig. 1(c). It wa.s also checked
that the height of the maximum was proportional
to the square of the input current to the coils
(I,') as indicated by theory.

Similar hysteresis effects were observed when
driving near the fundamental frequency ~,. The
resonance at +, was also induced when driving at
—,(do, q(00, and -', (d,.

Case (b): instability present. -As the neutral
pressure was decreased the instability reap-
peared as a self-excited oscillation. In this case,
using a constant drive current of 5 A peak to
peak the frequency was varied through the reso-
nant frequency of the system. The output from
an ion-biased probe in the plasma was fed to a
spectrum analyzer, and this allowed the ampli-
tude of the instability, the amplitude of the drive
frequency in the plasma, and the beat frequency
to be measured simultaneously. Figure 3(a)
shows the amplitude of the instability and the
drive amplitude obtained by this method, and
Fig. 3(b) shows the beat frequency obtained. It
is clearly seen that as the frequency increases
the instability amplitude decreases and the beat
frequency decreases linearly until the frequency
~, is reached. At this frequency value the insta-
bility is suppressed and frequency synchroniza-
tion occurs between the driven plasma oscilla-
tion and the applied frequency. Above this fre-
quency the driven amplitude in the plasma in-
creases and reaches a maximum at ~,. At ~,

the synchronization disappears and the instability
reappears together with "beats" of the drive and
instability frequencies. This appears to be in
complete agreement with the general theoretical
predictions as shown in Figs. 1(d) and 1(e). Fig-
ures 3(c) and 3(d) show the effect of driving near
1
—,~, and here similar effects are observed.

Consequently, it is seen that good agreement
is obtained between theory and experiment for a
nonlinear behavior as specified by Eqs. (4) and

(7) and that, in principle, this suggests a method
of obtaining values for the particular nonlinear
saturation coefficients P and y relevant to a par-
ticular instability in a plasma.
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