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states. The high-quantum-yield pair transitions
terminated at F(Er") and 'P, (Tm"), where non-
resonant sensitization resulted from the greater
spectral density of coupled electronic states rel-
ative to the density of coupled ion-phonon states.
The collective electronic states and dispersion
assigned to exchange were then at least neces-
sary supplements to the ion-pair states of Dex-
ter's' theory. Furthermore, the density of ex-
citation states was reduced in the infrared re-
gion by the density of pair states formed by the
number of possible combinations of ion levels.
Therefore, the radiationless relaxation of higher
energy levels uncoupled to Y'(H o"), and the weak
Er"- and Tm"-satellite fluorescence, concept-
ually were consistent with efficient sensitization.

Further explanation of the experimental results
presently would require expanded assumptions.
Crystals of varying HoF, and TmF, concentra-
tion are currently being studied.
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It is pointed out that statistical calculations and averages involving overlapping reso-
nances require the use of averaging intervals that are small compared with the energy
interval containing the resonance sample. Averages taken over the entire resonance
sample or more are physically inappropriate and lead to incorrect relations.

This note is occasioned by a series of recent
papers' ~ in which theoretical averaging methods
are employed that do not correspond to physical
averages. We shall show that the results of those
papers which conflict with earlier work' do not
correctly represent experimental averages.

Experimental determinations of the energy
average P(E0) of a nuclear-resonance cross sec-
tion o(E) are obtained by procedures that can be

represented by

o(z,) = ff(Z Z„ I)o(z-)zz,

where the resolution function f(E-E0, I) is nor-
malized to unity and differs from zero apprecia-
bly only within an energy interval of length I that
is centered on E, The precise s. hape of f de-
pends on t:he details of the experimental arrange-
ment and is often not known, but the value of f is
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presumed to fall off to zero fairly sharply out-
side the interval I. In any case, the concept of
any energy average is useful only if e is fairly
insensitive to the exact shape of f and is at most
a slowly varying function of both I and Eo. This
implies that the resonances of 0 are not confined
to the averaging interval but also occur outside I.

In the case of well-separated resonances, only
those resonances which lie inside the interval I
contribute to the energy variation of 0 in I. Any
cumulative contributions from more distant reso-
nances may be approximated by a constant con-
tribution to the background within I. Therefore
in this limit the calculation of o'(E, ) requires the-
oretical expressions only for the background in I
and for those resonances which lie within I. The
theoretical resolution function f can be chosen to
have the value I ' in the interval I and zero out-
side (rectangular resolution function).

When resonances overlap, then also some of
the resonances which lie outside the interval I
will contribute nontrivially to the integral of Eq.
(I) because the "tails" of such outside resonances
now reach into I and contribute to the energy de-
pendence of the cross section within I. But thi's

effect is confined to the edges of the averaging
interval and becomes unimportant at energies
that are separated from the edges of I by much
more than the resonance widths I'. It might be
thought, therefore, that the correct theoretical
average cross section for overlapping resonances
could be obtained using a rectangular resolution
function f and an expression for v that contains
resonances only within the averaging interval I,
provided that I were made sufficiently large com-
pared with I . In that way it would appear that
the contribution of the edge errors due to the ne-
glect of the outside resonances could be made ar-
bitrarily small. '

This supposition is, however, not valid. The
averaging procedure outlined in the preceding
paragraph is incorrect for overlapping reso-
nances. So are all variants of this procedure
which employ theoretical expressions for 0' con-
taining resonances only within I, regardless of
the precise shape of f.~' The difficulty arises
from the requirement of flux conservation (or
unitsrjty of the open-channel S matrix) which im-
poses certain conditions upon the resonance pa-
rameters of a. For a model having a finite set
of N resonances occupying an energy interval 4
the unitarity conditions vary systematically over
the interval 6 and the effects of that variation
cannot be reduced by increasing the number of

resonances, N. As a result one obtains different
average formulas depending on whether the aver-
aging interval I is taken equal to 4 as in Refs.
1-4, or is a smaller interval at the center of 4,
as in Ref. 5. The former case is seen to be un-
physical, the latter corresponds to the physical
case where the resonances in the averaging in-
terval are surrounded by other resonances.

To illustrate the situation we consider the uni-
tary scattering function for a single open channel
with N resonances:

(2a)

which can also be written in the form of a pole
expansion

(2b)

which is much easier to average than the mani-
festly unitary form (2a). In particular, it is well
known that the energy average of the sum in Eq.
(2b) yields -im(G„)/D, where (G„) is the average
of the G„and, where D is the spacing of the E„ in
the averaging interval. Similarly the average
compound-nucleus cross section is related to the
average of the absolute square of the sum in Eq.
(2b) which gives (2m/D)(~ G„~'/I'„) if one assumes
that the interference terms average out. '

By Eq. (2a) the residues G„which we need to
calculate averages are not independent parame-
ters but depend on the E„and the F„. The whole
question revolves, therefore, upon the compari-
son of (G„) averaged over the resonances in a
physical averaging interval I«ND, on the one

hand, and the value of (G„) averaged over all N
resonances on the other hand.

This question is easily studied with the aid of
a simple model of N poles with equal spacings
and equal widths':

E -E =D p, =1 ~ ~ ~ N1P+~

We find from Eq. (2) that

(4)

which immediately leads to the results that in the
limit of a large number N of resonances

G „sinh(n I'/D)
I' m 1 /D
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G„sinh ml" D

when p, = 1 or ¹ (6)

Equation (5) has also been shown to be generally
valid for the absolute value of the average (G„) in
a physical averaging interval. " On the other
hand, for the average over all N resonances it
can be shown that"

(G„) =(F ) „ (7)

holds rigorously.
We see therefore that for overlapping reso-

nances, that is, for large I'/D, the relation be-
tween the G„and the I'„changes radically from
Eq. (5) at the center to Eq. (6) at the edge of the
interval ~ =AD and that the average relation Eq.
(5) which holds in a physical averaging interval I
located near the center is very different from
Eq. (7) which gives the average taken over the
whole interval 6 =MD."

What are the consequences of using the two
kinds of intervals& Using Eq. (2b) one gets for
the average' over h

Sl= = " (1- (G) = /D)

=e "~(l-n(F)/D),

and for the optical-model transmission coeffi-
cient

Tg g= 1-~ S~'= 2n((F)/D)(l —2w(F)/D).

Qn the other hand, averaging over a correct
physical averaging interval I«4 we get from
Eq. (5) or Refs. 8 and 9

(8)

(9)

Sq„~=e "~[cosh(m(I')/D) —sinh(m(F)/D)]

= exp[-2iy -(m( I')/D)],

Tq,&~= 1-exp( —2w( I')/D).

(1o)

(11)

~„,""= (~/a. ')((8„,8„.,/8„)-M...),
where 8& =Q 8„and the quantities M, , and the
averages (8„,) depend not only upon the channel

(12)

The term cosh(m(F)/D) in Eq. (10) comes from
the contribution of the resonances outside I to the
background of S within the physical averaging in-
terval I."

The average compound-nucleus cross section
for I=4 has been evaluated —albeit incorrectly"
—in Ref. 4. For the correct physical case I«&
it has been shown in Ref. 5 that the fluctuation
cross section can be written in the form

transmission coefficients but in general also upon
the details of the distributions and correlations
of resonance parameters. However, in the limit
where all channel transmission coefficients are
small, '

8~~ - 2nFq, '/D, M~ ~ —0,

which yields Bethe's average cross-section for-
mula" with width-fluctuation correction factor. "

On the other hand, in the limit of large I"/D un-
der the usual statistical assumption of uncorrela-
ed channels, it was found that'

(8„.) —T„M... -0,
resulting in the familiar Hauser-Feshbach formu-
la" again with a 0 fluctuation correction where
necessary.

In the domain of intermediate conditions where
neither (11) nor (10) is applicable, the average
cross-section calculation is more complicated
and requires information on the statistical distri-
butions and correlations of the resonance param-
eters E„, I"„, and G„,. This information, which
is a1so required for interpretation of cross-sec-
tion fluctuations, has been discussed elsewhere. "

We conclude that resonances outside the aver-
aging interval have a large effect upon the calcu-
lated averages over overlapping resonances and
that this effect cannot be ignored. The averaging
interval I must be surrounded by another interval
4 sufficiently large so that only resonances out-
side b, contribute a negligible energy dependence
to the S matrix within I. The background and
resonance parameters within A must be chosen
according to an appropriate physical model. Res-
onances outside L can either be omitted or they
can be chosen at pleasure, provided they yield a
conver gent constant contribution within I that can
be compensated by an adjustment of the back-
ground term of the S matrix. This is the basis
for the very convenient "statistical S matrix"
which has a statistically uniform distribution of
resonances from F- = -~ to +~ and a constant
background. The definition and use of this statis-
tical S matrix is discussed in detail in Ref. 5.
Effects of energy-variable statistics were dis-
cussed in Ref. 8.

Besides the rectangular resolution function the
Lorentzian resolution function"

has been used extensively in theoretical calcula-
tions. Of course its use very obviously requires
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a device such as the statistical 8 matrix. Other-
wise the long tails of the Lorentzian wi11 pick up
contributions that are not typical of the reso-
nances within the more sharply defined experi-
mental averaging interval I." %hen this is done
the Lorentzian yields results that are identical
to those obtained with a rectangular resolution
function.
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The theory of stimulated thermal scattering of trains of short light pulses is developed.
Peculiar new effects are predicted for forward scattering, especially a critical depen-
dence on the angle between scattered light and pump light. Particular emphasis is di;
rected to the problem of pure thermal scattering. The dominant contribution to the stim-
ulated scattering is in general due to density variations, no matter how short the light

pulses are. Only under specific conditions is the density variation eliminated, allowing

the observation of the pure thermal effect.

Considerable interest has been focused recently
on the problem of stimulated scattering (STS)"
of mode-locked laser pulses. ' ' The amplifica-
tion of a beam of weak pulses passing through an
absorbing liquid in the presence of a strong beam
has been reported by Mack." It was suggested
by Batra and Enns' that second sound could also
be detected in this way.

In view of these important aspects, a theoreti-
ca1 investigation of STS of mode-locked light puls-

es seems to be necessary. The small-signal and
amplification technique developed previously' '
is here extended to trains of short light pulses.

The results provide a simple explanation of
. some of the experimental results and, most im-
portant, allow one to distinguish between STS and

potentially superimposed effects. In short, we
find a critical influence of the Brillouin frequency
vB and of the spacing between subsequent pulses,
ts. The amplification of the scattered wave is
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