ing the same phase for the unitarity sum of *S*-matrix decay amplitudes.

The remaining constraints in Eq. (7), combined with Eq. (15), impose many additional conditions on the decay amplitudes (especially for $K_L \rightarrow 2\pi$), which are discussed in the succeeding Letter.⁷

It is a pleasure to thank L. Durand, III, C. J. Goebel, and B. Sakita for their solicitous interest and stimulating conversations.

*Work supported in part by the National Science Foundation.

¹J. S. Bell and J. Steinberger, in <u>Proceedings of the</u> <u>Oxford International Conference on Elementary Parti-</u> <u>cles</u>, September, 1965 (Rutherford High Energy Laboratory, Chilton, Berkshire, England, 1966), pp. 195-222.

²R. C. Casella, Phys. Rev. Letters <u>21</u>, 1128 (1968). ³W. D. McGlinn and D. Polis, Phys. Rev. Letters <u>22</u>, 908 (1969).

⁴We note that since the total widths have been factored out of the pole terms in Eq. (2), the g's and h's are dimensionless.

⁵K. W. McVoy, to be published.

⁶This is true only to lowest order in Γ_L/Γ_S . It has long been known [e.g., A. M. Lane and R. G. Thomas, Rev. Mod. Phys. <u>30</u>, 257 (1958)] that in general the sum of the partial widths exceeds the total width, for each resonance.

⁷L. Durand, III, and K. W. McVoy, following Letter [Phys. Rev. Letters 23, 59 (1969)].

S-MATRIX DESCRIPTION OF K_L AND K_S DECAYS*

Loyal Durand, III, and Kirk W. McVoy Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (Received 2 May 1969)

We show how the usual phenomenological description of the decays of the K_S and K_L mesons can be derived in a unified manner beginning from a description of the K_S and K_L states as overlapping resonances in a scattering matrix. The unitarity relations for overlapping resonances in a *CPT*-invariant (but not *CP*- or *T*-invariant) theory play a crucial role in the discussion, and are treated in detail.

In the present paper, we show how the usual phenomenological description of the decays of the neutral K mesons K_S and K_L can be derived in a simple, unified manner beginning from a description of the K_S and K_L states as overlapping resonances in a scattering matrix. The unitarity relations for the *CPT*-invariant *S* matrix are found to play a central role in the discussion of all decay modes of K_S and K_L . In the customary analysis,¹ on the other hand, unitarity is used only in the discussion of the *CP*-nonconserving decays, to determine the phase of the amplitude ratios

$$\epsilon = A \left(K_L - \pi \pi, I = 0 \right) / A \left(K_S - \pi \pi, I = 0 \right)$$
(1)

(through the Bell-Steinberger sum rule^{1, 2}), and

$$\epsilon' = A \left(K_L \to \pi \pi, I = 2 \right) / \sqrt{2} A \left(K_S \to \pi \pi, I = 0 \right)$$
 (2)

(through the Watson final-state theorem applied to K and \overline{K} decays). It does not enter the standard discussion of the semileptonic decay modes of K_L and K_S at all.

(a) General formulation. – The K_S and K_L mesons are overlapping resonances which decay into a common set of channels (predominantly, the 2π , 3π , $\pi l \bar{\nu}$, and $\pi \bar{l} \nu$ channels). If the energy dependence of the background scattering in these

channels can be neglected in the neighborhood of the K_S and K_L masses, the partial-wave S matrix connecting the relevant channels can be approximated by the two-pole expression

$$S(E) = B - i\Gamma_S \frac{g_S \bar{h}_S}{E - \xi_S} - i\Gamma_L \frac{g_L \bar{h}_L}{E - \xi_L}.$$
(3)

The constant background matrix *B* describes that part of the scattering $(2\pi + 2\pi, 3\pi + 3\pi, \text{etc.})$ not associated with K_S and K_L . ξ_S and ξ_L are the complex resonance energies for the K_S and K_L systems, $\xi_S = m_S - i\Gamma_S/2$ and $\xi_L = m_L - i\Gamma_L/2$. g_S and g_L are (constant) column vectors of partialwidth amplitudes g_{Sc} , g_{Lc} for the decay of K_S and K_L into channel *c*, and \tilde{h}_S and \tilde{h}_L are the corresponding row vectors which describe the production of K_S and K_L through those channels. The usual decay and production amplitudes are related to the g's and h's by $A(K_S - c) = \Gamma_S^{-1/2}g_{Sc}$, $A(K_L + c) = \Gamma_L^{-1/2}g_{Lc}$, $A(c - K_S) = \Gamma_S^{-1/2}h_{Sc}$, $A(c - K_L)$ $= \Gamma_L^{-1/2}h_{Lc}$.

The requirement that S be unitary throughout the K_S - K_L region leads to a unitarity relation for the background matrix B,

$$BB^{\dagger} = B^{\dagger}B = 1, \tag{4}$$

and two vector equations which must be satisfied by the g's and h's,³

$$Bh_{S}^{*} - i \frac{\Gamma_{L}}{\xi_{S}^{*} - \xi_{L}} (h_{S}^{\dagger} h_{L}) g_{L} - (h_{S}^{\dagger} h_{S}) g_{S} = 0, \quad (5)$$

$$Bh_{L}^{*} - i \frac{\Gamma_{S}}{\xi_{L}^{*} - \xi_{S}} (h_{L}^{\dagger} h_{S}) g_{S} - (h_{L}^{\dagger} h_{L}) g_{L} = 0.$$
 (6)

CPT invariance leads to additional relations among the g's and h's. These assume a simple form if we choose the channel states to be eigenstates of *CP* with eigenvalues ± 1 . We will write g_S and g_L in a split notation as

$$g_{\mathcal{S}} = \begin{pmatrix} g_{\mathcal{S}}^{+} \\ g_{\mathcal{S}}^{-} \end{pmatrix}, \quad g_{\mathcal{L}} = \begin{pmatrix} g_{\mathcal{L}}^{+} \\ g_{\mathcal{L}}^{-} \end{pmatrix}, \tag{7}$$

where the \pm signs refer to the *CP* eigenvalues of the channel states. The *h*'s then assume the form²

$$h_{S} = \begin{pmatrix} h_{S}^{+} \\ h_{S}^{-} \end{pmatrix} = \begin{pmatrix} g_{S}^{+} \\ -g_{S}^{-} \end{pmatrix},$$

$$h_{L} = \begin{pmatrix} h_{L}^{+} \\ h_{L}^{-} \end{pmatrix} = \begin{pmatrix} -g_{L}^{+} \\ g_{L}^{-} \end{pmatrix} \quad (CPT).$$
(8)

Note in particular that $h_S^{\dagger}h_S = g_S^{\dagger}g_S$, $h_L^{\dagger}h_L = g_L^{\dagger}g_L$, and $h_S^{\dagger}h_L = -g_S^{\dagger}g_L$.⁴ These relations and Eq. (8) can be used to express the unitarity equations entirely in terms of the decay amplitudes g_S^{\dagger} and g_L^{\dagger} .

CPT invariance requires that the background matrix be of the form

$$B = \begin{pmatrix} B_{++} & B_{+-} \\ B_{-+} & B_{--} \end{pmatrix},$$
 (9)

where $\tilde{B}_{++} = B_{++}$, $\tilde{B}_{--} = B_{--}$, and $B_{-+} = -\tilde{B}_{+-}$. We will assume in the ensuing discussion that the background scattering conserves *CP*, that is, that *CP* invariance is violated only by the K_S and K_L terms in Eq. (3).⁵ In this case, B_{+-} and B_{-+} vanish, while B_{++} and B_{--} are separately unitary and symmetric. It is rather easy to prove, independently of this assumption, that $g_S^{\dagger}g_S$ is equal to $g_L^{\dagger}g_L$, and that the quantity $(ig_S^{\dagger}g_L)/(\xi_S^{*}-\xi_L)$ is real⁶:

$$ig_{S}^{\dagger}g_{L}/(\xi_{S}^{\ast}-\xi_{L})=\alpha, \ \alpha \text{ real},$$
 (10)

$$g_{S}^{\dagger}g_{S} = g_{L}^{\dagger}g_{L} = [1 + \Gamma_{S}\Gamma_{L}\alpha^{2}]^{1/2} \ge 1.$$
 (11)

The unitarity equations assume a remarkably simple form when we use these consequences of *CPT* invariance:

$$Bh_{S}^{*} = [1 + \Gamma_{S}\Gamma_{L}\alpha^{2}]^{1/2}g_{S} - \Gamma_{L}\alpha g_{L}, \qquad (12)$$

$$Bh_L^* = [1 + \Gamma_S \Gamma_L \alpha^2]^{1/2} g_L - \Gamma_S \alpha g_S.$$
(13)

Note that α is proportional to the inner product

 $g_S^{\dagger}g_L$ which describes the overlap of K_S and K_L in the decay channels. The Bell-Steinberger sum rule¹ for the K_S and K_L decays is equivalent in the case of *CPT* conservation to the statement that $g_S^{\dagger}g_L = i(\xi_S^{*} - \xi_L)\alpha$, with $\alpha = \langle K_L | K_S \rangle$ real. If *CP* were conserved, with K_S and K_L being *CP* eigenstates with eigenvalues +1 and -1, g_S^{-} and g_L^{+} would vanish. In this limit, $g_S^{\dagger}g_L = 0$, α vanishes, and there are no connections between the decays of K_S and K_L . It is interesting to note that the sums of the partial widths $\Gamma_S g_S^{\dagger}g_S$ and $\Gamma_L g_L^{\dagger}g_L$ for the decays of K_S and K_L given by Eq. (11) are larger than the total widths Γ_S and Γ_L . This characteristic of overlapping resonances has long been recognized.⁷

(b) <u>Applications.</u> – The general unitarity equations can be simplified significantly if we restrict our attention to the K_S - K_L system. We will use the following information⁸: (i) K_S and K_L are very nearly eigenstates of CP with eigenvalues +1 and -1; (ii) $m_L - m_S \sim \Gamma_S/2$, $\Gamma_S/\Gamma_L \sim 600$; (iii) $|g_{S \to \pi\pi}(I=2)|/|g_{S \to \pi\pi}(I=0)| \sim 0.06$; (iv) the partial decay rates for the semileptonic decays of K_L and K_S and 3π decays of K_L are comparable; (v) the magnitude of the CP-nonconserving 2π decay amplitude of K_L is $\sim 2 \times 10^{-3}$ of the CP-conserving 2π decay amplitude of K_S .

We first consider the magnitude of the parameter α , $|\alpha| \simeq \sqrt{2} |g_S^{\dagger}g_L|/\Gamma_S$. We will assume that the strength of the *CP*-invariance violation is small in all channels, specifically, that $|\Gamma_L^{1/2} \\ \times g_{Lc}^{-+}| \sim 10^{-3} |\Gamma_S^{-1/2}g_{Sc}^{-+}|$, and $|\Gamma_S^{-1/2}g_{Sc}^{--}| \sim 10^{-3} \\ \times |\Gamma_L^{-1/2}g_{Lc}^{--}|$. It is then easily seen that the only important contribution to $g_S^{\dagger}g_L$ arises from the 2π decays of K_S and K_L in the *I*=0 state.⁹ If we retain only this contribution, we obtain an explicit expression for α ,

$$\alpha \simeq ig_{S+2\pi}^{*}(I=0)g_{L+2\pi}(I=0)/(\xi_{S}^{*}-\xi_{L}).$$
(14)

This parameter is quite small experimentally $(\Gamma_S | \alpha| \sim 3 \times 10^{-3})$. We will therefore replace the factors $[1 + \Gamma_S \Gamma_L \alpha^2]$ by unity in Eqs. (12) and (13). We will also drop quantities which are second order in the *CP* nonconservation. The unitarity equations then reduce to the following:

$$B_{+}g_{S}^{+*}=g_{S}^{+}, (15)$$

$$B_{-}g_{L}^{-*}=g_{L}^{-}, \qquad (16)$$

$$-B_{+}g_{L}^{+*}=g_{L}^{+}-\Gamma_{S}\alpha g_{S}^{+}, \qquad (17)$$

$$-B_{g_{\mathcal{S}}}^{-*}=g_{\mathcal{S}}^{-}-\Gamma_{L}\alpha g_{L}^{-}.$$
(18)

These equations lead immediately to the usual parametrization of the *CP*-nonconserving decays of K_L and K_S .

 $K_L \rightarrow 2\pi$. – We will assume that the strong-interaction background scattering in the $\pi\pi$ system is diagonal in the isospin. The phases of the *CP*allowed 2π decay amplitudes of K_S are then determined by Eq. (15),

$$g_{S+2\pi}(I=0) = \pm e^{i\delta_0} |g_{S+\pi\pi}(I=0)|, \qquad (19)$$

$$g_{S \to 2\pi}(I=2) = \pm e^{i\delta_2} |g_{S \to \pi\pi}(I=0)|, \qquad (20)$$

where δ_0 and δ_2 are the strong-interaction phase shifts for $\pi\pi$ scattering in the I=0 and I=2 states. Equations (19) and (20) are of course just the statement of the Watson final-state interaction theorem for the *CP*-allowed 2π decays of K_S . The dominance of the I=0 2π decay mode of K_S and the normalization condition in Eq. (11) imply in addition that $|g_{S+\pi\pi}(I=0)| \sim 1$, so that $g_{S+\pi\pi}(I=0) = \pm e^{i\delta_0}$.

The 2π decay amplitudes for K_L are restricted by Eq. (17),

$$e^{2i\delta_0}g_{L \to \pi\pi}^*(I=0) = -g_{L \to \pi\pi}(I=0) + \Gamma_S \alpha g_{S \to \pi\pi}(I=0), \qquad (21)$$

$$e^{2i\delta_2}g_{L+\pi\pi}^*(I=2) = -g_{L+\pi\pi}(I=2).$$
(22)

We have dropped the small I=2 2π decay amplitude of K_S in writing Eq. (22). Equations (19), (21), and (22) and the explicit expression for α given in Eq. (14) are sufficient to determine the phases of the *CP*-nonconserving 2π decay amplitudes of K_L ,

$$g_{L+\pi\pi}(I=0) = \pm i e^{i(\delta_0 - \Delta)} |g_{L+\pi\pi}(I=0)|, \qquad (23)$$

$$g_{L + \pi\pi}(I=2) = \pm i e^{i\delta_2} |g_{L + \pi\pi}(I=2)|, \qquad (24)$$

where

$$\Delta = \tan^{-1} \frac{\Gamma_s/2}{m_L - m_s}.$$
 (25)

It is customary to introduce the amplitude ratios

$$A(K_{L,S} - \pi^{+}l^{\pm}\nu) = 2^{-1/2} [A^{+}(K_{L,S} - \pi l\nu) \pm A^{-}(K_{L,S} - \pi l\nu)].$$

We note also the expression of the $\Delta S = \Delta Q$ rule in the present formalism,

$$A^{+}(K_{S} \to \pi l\nu) = A^{-}(K_{L} \to \pi l\nu), \ A^{-}(K_{S} \to \pi l\nu) = A^{+}(K_{L} \to \pi l\nu).$$
(32)

The charge asymmetry in the decays of K_L and K_S is easily calculated using Eqs. (28)-(31). To lowest order in the *CP*-invariance violation,

$$R_{L,S} = \frac{|A(K_{L,S} - \pi^{-}l^{+}\nu)|^{2} - |A(K_{L,S} - \pi^{+}l^{-}\nu)|^{2}}{|A(K_{L,S} - \pi^{-}l^{+}\nu)|^{2} + |A(K_{L,S} - \pi^{+}l^{-}\nu)|^{2}} = 2\operatorname{Re}\epsilon.$$
(33)

A failure of the $\Delta S = \Delta Q$ rule would introduce an extra factor A_S^+/A_L^- in R_L , and a factor A_L^-/A_S^+ in R_S .

<u> 3π decays.</u>—The unitarity relations for the 3π decays of K_L and K_S , Eqs. (16) and (18), involve integrals of the $3\pi \rightarrow 3\pi$ background amplitude in B_- and either g_L^{-*} or g_S^{-*} over the 3π phase space (Dal-

defined in Eqs. (1) and (2), $\epsilon = \Gamma_L^{1/2} g_{L+\pi\pi} (I=0) / \Gamma_S^{1/2} g_{S+\pi\pi} (I=0)$, and $\epsilon' = \Gamma_L^{1/2} g_{L+\pi\pi} (I=2) / [\sqrt{2} \Gamma_S^{1/2} \times g_{S+\pi\pi} (I=0)]$. The results in Eqs. (23) and (24) determine the phases of ϵ and ϵ' ,

$$\epsilon = \pm i e^{-i\Delta} |\epsilon|, \ \epsilon' = \pm i e^{i(\delta_2 - \delta_0)} |\epsilon'|, \tag{26}$$

in agreement with the results of the standard discussions.¹ The amplitude ratios $\eta_{+-} = A(K_L \rightarrow \pi^+\pi^-)/A(K_S \rightarrow \pi^+\pi^-)$ and $\eta_{00} = A(K_L \rightarrow \pi^0\pi^0)/A(K_S \rightarrow \pi^0\pi^0)$ are given by $\eta_{+-} = \epsilon + \epsilon'$, $\eta_{00} = \epsilon - 2\epsilon'$ as in the Wu-Yang analysis.¹

Equation (21) can also be written in a form which allows us to relate ϵ and α ,

$$\alpha = 2 \operatorname{Re} \left[g_{L + \pi \pi} (I=0) / \Gamma_{S} g_{S + \pi \pi} (I=0) \right]$$
$$= 2 \operatorname{Re} \epsilon / (\Gamma_{S} \Gamma_{L})^{1/2}.$$
(27)

The magnitudes of ϵ and ϵ' are of course not determined by the present considerations.

<u>Semileptonic decays.</u>—The background scattering in the leptonic channels $\pi l \nu - \pi l \nu$, with l an electron or muon, is electromagnetic or weak; the background matrix B for the decay of K_S and K_L into these channels may therefore by taken as a unit matrix. We can then conclude from Eqs. (15) and (16) that the g's for the *CP*-allowed decays of K_S and K_L are real,

$$g_{S \to \pi l \nu}^{+}, g_{L \to \pi l \nu}^{-}$$
 real. (28)

Similarly, Eqs. (17), (18), and (27) determine the real parts of the *CP*-nonconserving decay amplitudes,

$$\Gamma_L^{1/2} \operatorname{Reg}_{L \star \pi I\nu}^{+} = \Gamma_S^{1/2} g_{S \star \pi I\nu}^{+} \operatorname{Re} \epsilon, \qquad (29)$$

$$\Gamma_{S}^{1/2}\operatorname{Reg}_{S+\pi I\nu}^{-} = \Gamma_{L}^{1/2}g_{L+\pi I\nu}^{-}\operatorname{Re}\epsilon.$$
 (30)

The decays of K_L and K_S into states with definite lepton charge are described by linear combinations of the amplitudes for decay into the states with definite CP,

(31)

itz plot), and have not been investigated.

The authors would like to thank Professor C. J. Goebel and Professor B. Sakita for useful comments on parts of this work. One of the authors (L.D.) would also like to thank Professor W. McGlinn for raising the questions which led to this investigation.

*Work supported in part by the University of Wisconsin Research Committee, with funds granted by the Wisconsin Alumni Research Foundation, and in part by the U.S. Atomic Energy Commission under Contract No. AT(11-1)-881, COO-231.

¹T. T. Wu and C. N. Yang, Phys. Rev. Letters <u>13</u>, 380 (1964); J. S. Bell and J. Steinberger, in Proceedings of the Oxford International Conference on Elementary Particles, September, 1965 (Rutherford High Energy Laboratory, Chilton, Berkshire, England, 1966), p. 195.

²K. W. McVoy, preceding Letter [Phys. Rev. Letters 23, 56 (1969)].

³The analogs of Eqs. (5) and (6) for *CPT* and *T*-conserving interactions are discussed by K. W. McVoy (to be published). The more general relations in Eqs. (5) and (6) can be derived quite simply from the analytically continued unitarity equation $S^{\dagger}(E^*)S(E) = S(E)S^{\dagger}(E^*) = 1$ by requiring that the residues of the poles in these expressions at $E = \xi_S$ and $E = \xi_L$ vanish. The inner products in Eqs. (5) and (6) are understood to include sums over spins and integrals over phase space where these are necessary.

⁴Had we assumed T invariance rather than CPT invariance, the g's and h's would be equal, $g_S = h_S$, $g_L = h_L$, and S would be symmetric.

⁵This assumption is justified if *CP* is conserved by the strong and electromagnetic interactions. *CP*-invariance violations in the nonstrange weak interactions will change our results only by terms of weak interaction strength (10^{-6}) relative to the g's. The presence of CP-nonconserving terms in the strong or electromagnetic background scattering of order 10^{-3} relative to the *CP*-conserving terms would necessitate a complete reanalysis of the K_{S} and K_L decay phenomenology with B given by Eq. (9). Equations (10)-(13) are still valid, and provide a simple starting point for this analysis.

starting point for this analysis. ⁶The proof is based on an identity $g_L^{\dagger}Bh_S^{*} = -g_S^{\dagger}Bh_L^{*}$ which follows from the properties of the g's, h's, and B. Multiply Eq. (5) by g_L^{\dagger} and Eq. (6) by g_S^{\dagger} , and equate the expressions for $g_L^{\dagger}Bh_S^{*}$ and $-g_S^{\dagger}Bh_L^{*}$. Upon collecting terms, one finds that the ratio $(g_S^{\dagger}g_S)/(g_L^{\dagger}g_L)$ is necessarily equal to unity, and that $(g_S^{\dagger}g_L)/(\xi_S^{*}-\xi_L)$ is pure imaginary. The value of $g_S^{\dagger}g_S$ is established by using Eqs. (5) and (6) to determine the right-hand sides of the identities $g_S^{\dagger}g_S = \tilde{h}_S B^{\dagger}Bh_S^{*}$, $g_L^{\dagger}g_L = \tilde{h}_L B^{\dagger}Bh_L^{*}$, and eliminating the quantity $\operatorname{Re}(g_S^{\dagger}g_L)$ between the two equations. ⁷A. M. Lane and R. G. Thomas, Rev. Mod. Phys. <u>30</u>, 257 (1958). One can easily establish a sum rule for the to-tal widths. However, this envelopes the production decay and background amplitudes

tal widths. However, this envolves the production, decay and background amplitudes,

 $\Gamma_{S}g_{S}^{\dagger}Bh_{S}^{*}+\Gamma_{L}g_{L}^{\dagger}Bh_{L}^{*}=\Gamma_{S}+\Gamma_{L}.$

⁸J. Cronin, in <u>Proceedings of the Fourteenth International Conference on High Energy Physics</u>, Vienna, Austria, September, 1968 (CERN Scientific Information Service, Geneva, Switzerland, 1968), p. 281. Also N. Barash-Schmidt et al., Rev. Mod. Phys. 41, 109 (1969).

⁹With the assumptions noted above, the contribution of the CP-nonconserving 2π decay in the I=2 state is suppressed relative to that of the I=0 2π decay by a factor of $\sim \frac{1}{16}$, while the contributions of the CP-nonconserving 3π and semileptonic decay modes of K_S and K_L are suppressed by roughly a factor $\Gamma_L/\Gamma_S \sim 1/25$.

ERRATA

SCATTERING MODEL OF MOLECULAR ELEC-TRONIC STRUCTURE. Franklin C. Smith, Jr., and Keith H. Johnson [Phys. Rev. Letters 22, 1168 (1969)

Reference 3 should read: K. H. Johnson, Intern. J. Quantum Chem. 1S, 361 (1967).

EXPERIMENTAL VALUE OF $\Delta E_{H} - s_{H}$ IN HY -DROGEN. T. W. Shyn, W. L. Williams, R. T. Robiscoe, and T. Rebane [Phys. Rev. Letters 23, 1273 (1969).

The quoted error on $\Delta E_{H}-\$_{H}$ is one standard deviation from the mean, not one average deviation as reported.