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yield the usual moving trajectories.
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By including K~ in the background which underlies EI, ~-matrix unitarity can be used
to derive a set of constraints on the partial decay amplitudes of the two resonances.
The only constraint which does not explicitly involve the strong-interaction background
phases is equivalent to the Bell-Steinberger sum rule.

In 1965, Bell and Steinberger' derived a "uni-
tarity sum rule, "

-z(l, '-Ms)(L I s& =g&z I
7'I L&'O'I Tl s&, (I)

satisfied by the amplitudes for the decay of Zl
and Eq into final states E. Its practical signifi-
cance is that it determines the phase of the right-
hand side (Q) in terms of (L ( S&, and (L ( S& in
turn is, e.g. , real if CI'T is conserved, ' and

imaginary if only T is conserved. ' The sum
rule is particularly noteworthy because it in-
volves only the amplitudes for decay into the
channel states E, and not the production ampli-
tudes from the channels (2v, 3m, etc.), which
are different if T is not conserved (and unobserv-
able because they describe production via the
weak interaction).

Although the Bell-Steinberger derivation in-
volved only a consideration of the time depen-
dence of the decay process, McGlinn and Polis'
have recently suggested that by regarding Z&

and Eq as conventional but overlapping reso-
nances in the channels open at that energy, it
should be possible to obtain an equivalent sum
rule in terms of E-matrix partial-width ampli-
tudes. They did so, but the sum rule they found
in this way appeared to be different from the
Bell-Steinberger result. The apparent difference
seems to us to arise from a failure to distinguish
between E-matrix and S-matrix decay ampli-
tudes. To explain this, we have obtained yet a
third sum rule, this one expressed in terms of
8-matrrix partial widths. We find that the phase
information it contains is equivalent both to that
of the Bell-Steinberger sum rule and to that of
the McGlinn-Polis expression, so that in this
sense all three results are equivalent.

Consider two overlapping resonances with the
same quantum numbers. If in their neighborhood
the energy dependence of the background can be
neglected, the partial-wave 8 matrix for N open
channels can be approximated by the two-pole
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expression

S(E) = B EI-gs"s
sZ-ms+-,'zI.'s

(2)

Secondly, the one-pole expression including only

Es is readily seen to be unitary for real E only
if

B gs=(gs~gs)&s ~ (4)

Squaring the latter equation gives

(gs'gs)(&s'&s) =1,

but since only gshz appears in S, their relative
normalizations are immaterial and we can take

gs gs="s hs= & (6)

with B an N xN constant matrix. gs and gL are
column vectors of partial-width amplitudes gs,
and gz, for the decay of Rs and RL into channels
c. hs and hI are corresponding row vectors for
production from these channels (with h g g if T
is not conserved), so that gh is an N xN nonsym-
metric dyad, (gh)« =g, h, .'

We wish to impose two distinct conditions on S:
that it be unitary, and that it be CI'T invariant.
Taking unitarity first, it is clear that 8 can be
identically unitary in E only if the vectors g and

h satisfy a number of constraints. The exact
constraint equations have been obtained else-
where, ' but in the case ~z «Cs an adequate ap-
proximation can be obtained by the following sim-
ple argument. First, from the fact that S must
be unitary outside of both resonances, it clearly
follows that 8 itself must be unitary. Then if
I"I« I"s, there is a large energy region inside
the broad Es but outside the narrow &L where
the sum of the first two terms of Eq. (2) alone
must be unitary; requiring this imposes con-
straints on gs and hs. Finally, unitarity within

El imposes constraints on gl and hL as well. In
the &-conserving case g=h, these constraints
turn out to be simply a restatement of the Wat-
son final-state theorem, which determines the
phases of the decay amplitudes gs, and gi~ to
be the scattering phases of their respective back-
grounds in channel c.

Thus we have, first,

B~B=1.

well as the sum of the production widths equals
the total width I's.' Equations (4) and (6) (N = 2
constraints) are the unitarity conditions for Ks
alone. We note in passing that if T were con-
served, so that hs =gs, and if B were diagonal,
B«.= 5«.e' &, Eq. (4) would simply determine
the phase of gs, to be 5„ i.e. , the Watson final-
state theorem familiar from the customary
Breit-Wigner expression for S.

If now the first two terms of Eq. (2) are called
Bs and used as the background for El., we have
as before (gL gL) = (hL h L) = 1, and Bs gL =hL,
which is, explicitly,

I'sBhL -i (~L ~$)gs gLmi-ms+ ail s

These are the unitarity constraints on the EL am-
plitudes, with the Es component of the Ri back-
ground represented by the second term (which
would vanish if EL and Rs decayed only into chan-
nels of different CP). Multiplying the equation
on the left by gst and using Eqs. (4) and (6) pro-
duces the equation

~L ~$ e (gL gs)

which can also be written

-&(ML -&s)lies. gs-(&L"&s) l=l sgL gs~ (9)

a form very reminiscent of the Bell-Steinberger
equation. Here b is the mass-difference angle,

tank = —,'I' s/(mL-ms).

Now consider symmetry constraints. If T
alone were conserved, e.g. , we could take h =g
for each resonance, so the bracketed factor of
Eq. (9) would be pure imaginary, exactly like
the (LlS) of Eq. (1).' Consequently, if we write

(gL'gs) = P~",

we would have y -=6 (mode)
If instead CPS is conserved, simple results

can be obtained by choosing the channel states
to be CI' eigenstates, which is always possible.
Then

T~~i = (/~i+i, H )~i) = (CPTg~ ~+i, H CPTy~i)

= (H CP)si, CP)p~ ~)

+(P„HgP
„C-)) aT

where c and c' are the time-reversed states and
the + (-) sign obtains if c and c' have the same
(opposite) CP. Equivalently,

In other words, the sum of the decay widths as &CC =~C C (12)
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If magnetic quantum numbers are not included in
the channel label c, we can equivalently write
S, =+S,„ in which case at a resonance Eq.
(12) implies gnchnc. =g«ihnc, or

hnc'/gn c'=hnc/gnc: Xn

for all c and c' which have, say, CP =+1. Since
only the product g,h, . appears in S, there is
evidently no loss of generality in so defining them
that X '=+1. Similarly A, can be defined, but
if c and c' have opposite CP, Eq. (12) implies

I+ C, S+ (16)

first N-2 eigenvectors. But since the McGlinn-
Polis Z is a sum of the dyadics 4L41~ and 4 SOS~,
it can have the same eigenvectors as S only if
AL, and hs lie in the space spanned by 4L, and
4s . Similarly, gl. and gs are linear combina-
tions of CL and 4 s. It is then readily verified
that the CPT condition, Eq. (15), can only be
satisfied if

h../g. . = -h../g", (14)
(aside from overall phase factors), with 4 I+,
C'z, , @s+, and Cs real, and

i.e. , A. =-A.
Hence if CPT is valid for all the interactions,

and in addition CP for the channel states, we can
write in split notation

Al = z, C i'+ o.sC's

gs. = —+L,C'L,—&s4's~

hs ~L@L +PSC s

gs =&IPr. =&s~s. (17)

where the "upper components" refer to CP=+1
channels.

If we call a resonance with the upper sign
choice a resonance of "positive CP signature, "
then for two resonances which have opposite sig-
nature, we clearly have

Ag k2=-gg g2.

Since K s and EI are nearly CP eigenvalues +1
and -1, it is most natural to adopt a phase con-
vention which assigns positive signature to &s
and negative signature to El, this is the Bell-
Steinberger convention, and the one which gives
the Watson final-state theorem in its customary
form. If this convention is employed, Eq. (8)
or (9) determines the phase of gz gs to be y
= 4+ —,'v (mod~). Since this is also the phase of
the Bell-Steinberger Q when CPT is assumed
we interpret this to mean that their sum rule
and ours contain the same phase information,
which is the only aspect employed phenomeno-
logically.

Finally, we investigate the relation to the Mc-
Glinn-Polis sum rule only in the special case
considered by them, in which the background
matrix B is taken to be the unit matrix. Ã-2 of
the N right eigenvectors of S(E) are then orthog-
onal to h~ and hs (in the non-Hermitian sense
hzv=hsn=0), and all N-2 have S-eigenvalues
unity; the remaining two eigenvectors lie in the
subspace spanned by h I and hs. The matrix R
(or T), being a function of S, has these same
eigenvectors, with E-eigenvalues zero for the

o.'g= 1, o.'s = -irsX/26m,

Ps = f
~ PJ.= r J.X/2m 5 ='0 (18)

(to within an overall minus sign), with s.m =mz
-ms. We note that this implies

g~'gs =-fX(1+&rs/26m), (19)

which determines the phase of gz gs to be b
+ ~v (mod&), in agreement with our above result.

Then, in the McGlinn-Polis notation,

r."'&.ll l4.&
= &. I ~,lc.& =2r.&.Ig, &&h. lc,&

= 2r~&n I g~ &,

r."'&.l~ IC.&
=

& I ~.lc.&

= 2rs&n I gs&&h s IC s&

= »rs&~I as&. (20)

Consequently the complex conjugate of the Mc-
Glinn-Polis sum rule can be written in terms of
these S-matrix amplitudes as

=4K &golgi&'&~lgs&, (21)

from which it follows that the phase of this sum
is also b, a 2v (mode). We interpret this to mean
that the 4'-matrix, S-matrix, and Bell-Stein-
berger sum rules are all equivalent in predict-

Note that the phase choice in Eq. (16) makes X
=-Cs Cl. real.

Finally, our S residues -i J. I gLAL and -iI sos&s
equal the McGlinn-Polis Az and As (to first or-
der in X and rz/rs) only if
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ing the same phase for the unitarity sum of S-
matrix decay amplitudes.

The remaining constraints in Eq. (7), combined
with Eq. (15), impose many additional conditions
on the decay amplitudes (especially for Kz -2n),
which are discussed in the succeeding Letter. '
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We show how the usual phenomenological description of the decays of the K~ and K~
mesons can be derived in a unified manner beginning from a description of the K~ and
KL states as overlapping resonances in a scattering matrix. The unitarity relations for
overlapping resonances in a &PT-invariant (but not CP- or &-invariant) theory play a
crucial role in the discussion, and are treated in detail.

A(Kz mwj I 2)/v 2A(K~ mm I 0) (2)

(through the Watson final-state theorem applied
to K and K decays). It does not enter the stan-
dard discussion of the semileptonic decay modes
of Kl. and Kg at a11.

(a) General formulation. —The Kq and Kz me-
sons are overlapping resonances which decay into
a common set of channels (predominantly, the
2m, 3m, mlv, and wlv channels). If the energy de-
pendence of the background scattering in these

In the preserit paper, we show how the usual
phenomenological description of the decays of the
neutral K mesons K& and KI. can be derived in a
simple, unified manner beginning from a descrip-
tion of the K& and Ki states as overlapping reso-
nances in a scattering matrix. The unitarity re-
lations for the CPT-invariant 8 matrix are found
to play a central role in the discussion of all de-
cay modes of Kz and Kz. In the customary analy-
sis, ' on the other hand, unitarity is used onIy in
the discussion of the CP-nonconserving decays,
to determine the phase of the amplitude ratios

e =A (Kz - n'm, I= 0)/A (Kg —w7t', I= 0)

(through the Bell-Steinberger sum rule" ), and

channels can be neglected in the neighborhood of
the K& and KL masses, the partial-wave S matrix
connecting the relevant channels can be approxi-
mated by the two-pole expression

S(g) g I gS s I gz L
'&-&s (3)

BB~=B~B= 1, (4)

The constant background matrix B describes that
part of the scattering (2s -2m, 37t -3s, etc. ) not
associated with K~ and Kz. $z and $z are the
complex resonance energies for the K& and KI
systems, $ z = m~-i I'z/2 and $z = mz -i 1 z/2. gz
and gz are (constant) column vectors of partial-
width amplitudes gz„g&, for the decay of Kz
and KI into channel c, and hz and h~ are the cor-
responding row vectors which describe the pro-
duction of K& and Kz through those channels. The
usual decay and production amplitudes are relat-
ed to the g's and h's by A (K~ - c) = I'~"'gz„A (Kz
-c)= lz gz. , A(c-K )=I' '"h, A(c-Kz)
= r,"'~„.

The requirement that S be unitary throughout
the K&-Kl region leads to a unitarity relation for
the background matrix B,

59


