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amplitude (17) and a decay amplitude with these helicity labels by Gottfried and Jackson, Ref. 6.
8R,. Delbourgo, A. Salam, and J. Strathdee, Phys. Rev. 164, 1961 (1967); G. Cosenza, A. Sciarrino, and M. Toi-

ler, Nuovo Cimento 57, 253 (1968); G. Domokos and G. L. Tindle, Phys. Rev. 165, 1906 (1968); W. 3,. Frazer,
F. R. Halpern, H. M. Lipinski, and D. H,. Snider, Phys. Rev. 176, 2047 (1968).

9See also Feldman and Matthews, Ref. 2, part 2, for a general review and further references.
If a, b, and c are any four-vectors (c timelike), we denote by 0(a, b;c) the angle between a and b in the frame in

which c=0. (See, e.g. , Feldman and Matthews, Ref. 2, part 2, Appendix. )
~See, e.g. , K. M. Bitar and G. L. Tindle, Phys. Rev. 175, 1835 (1968) or Feldman and Matthews Ref. 2, part 2.

~ We clearly also have the restriction, ~=M&, which determines which of the helicity amplitudes of the p~, po sys-
tem survives at t~=0.

If the sum over 42 in (9) is dominated by a single resonance of spin 82, then M~ -min(jo+j&, ~2+j2).
E. L. Berger, Phys. Rev. Letters 21, 701 (1968).
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The scalar, pseudoscalar, vector, and axial-vector form factors of the pion are de-
rived from (i) the Veneziano amplitudes for w+w x+m and m+w A&+w, (ii) the hy-
pothesis of the partially conserved axial-vector current, and (iii) the requirement that a
chirally conjugate pair of form factors should exhibit similar structures. The resulting
form factors feature an infinite sequence of poles corresponding to daughters of specific
spin and parity, and definite signature. Various predictions on the clashing-beam produc-
tion of 27t and on p-meson coupling constants are given.

Recently, the Veneziano-type form factors for the pion have been discussed by several authors, '
but these fail to satisfy a natural requirement that a chirally conjugate pair of sources, like the vec-
tor current V&' and the axial-vector current A&', should couple in more or less symmetric ways to
an infinite number of particles with specific spin and parity, whose existence is one consequence of
the Veneziano model. '

To illustrate our point, let us take for example the following off-shell mn scattering amplitude which
is consistent with the condition of partially conserved axial-vector current (PCAC) and which reduces
to the Veneziano-Lovelace' amplitude on the mass shell:

(s (q')~6 "A~' '(0)~s'(p), w (q))=v2f, m, '(k'-m, ') 'p,B,"(s,t),

where

BJ, J(s, t) = I'(t-a, )I'(j-a,)/I'(k-a, -n,).
Here k is the momentum of the off-shell n' meson and s = (p+q)', t = (k-P)', and u =(q-k)'. a~ = o. (s)
represents the degenerate p-f trajectory and is given by a(s) = a+b(s m, ') w-ith b '=2(mz'-m, '). f„
is the pion decay constant and P, =g~„,'. Now by continuing to p-0 by means of the standard soft-pion
technique the left-hand side of (1) reduces to the pion matrix element of the so-called Z term,

[a,"'(x), 6'W„'-'(0) j.. .=2tb'( )Z(0).

On the right-hand side, we have s =u =m, ', t = k', and using a(m, ') = —' we obtain'

&s (q')I~(0)l& (q))=-~(t)=- g„' ~-m, ' I'(1-o.',)
(2)

Here we have used a scaling law'

mf, 'P,b = 1

in order to obtain the above normalization. Thus, in spite of our original assumption expressed in
(1), namely, that the pseudoscalar source 6 "A„' '(x) couples only to the m meson, we obtain the result
that its chiral counterpart Z couples to all 0 daughters of the p ftrajectory. We c-onsider this asym-
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metric situation unsatisfactory and, therefore, generalize the PCAC condition (1) so as to take into ac-
count all 0 daughters of the m-A, trajectory:

&~ IS"a,' 'l~', ~ )=&2~(k')B,"(s, t),

where

~(t) = 2 f.m. '(t-m. ')p. .
D=P

(4)

(5)

The summation is tentatively on all the 0 daughters, and n = 0 refers to nmeson. The meaning of K(t)
as a pseudoscalar form factor can be made more explicit by taking the v meson (the 0' daughter of p
meson) pole in the s channel of (4). We find

(~ (q') Is'&~' '(o)l~(q)&=(4&g.„) '~(t).

Again applying the soft-meson technique to (4) we obtain, instead of (2),

z(t) = f,f (t-)~'"r (1 ~,)/r(-,' ~,).- (6)

As stated before we want similar structures for the chirally conjugate pair Z(t) and P(t), and an obvi-
ous way is for 8 (t) to eliminate half the poles and zeros of I'(1—o.,)/r( —,—a,). This is possible assum-
ing that the m-A, trajectory is parallel to that of p, that is, n, (t) = o.(t)-2. Thus we may take

v 2f, I"(—,') I'(1——'n, )
(7)

f, ~,mr(-,')n! ~+2n n, — (7')

The normalization has been fixed by comparing the expansion (7 ) with (5), the first term of which is
known. Now introducing (6) into (5) we find

(8)

Thus, we have a.chieved similar structures for 8 (t) and Z(t), both having poles and zeros at every oth-

er possible position, that is, separated by 2b

To obtain the vector form factor, we consider, instead of (4), the matrix element of the axial-vector
current A &' ' between z and n'n . Such matrix elements were constructed by several authors' ' in

the case when the axial-vector current was coupled to the 7t and A., mesons only. Here we assume for
the moment that the axial-vector current couples to all 0 and 1' daughters of the m-A, trajectory.
Generalizing the result by Rosner and the author, ' we write then

(v2i) '(w (q')~A ' '(0)~w'(p), z (q))= gf„p, (k' m') 'B,"(—s, t)k„+(q C, +k„C,)B,"(s, t)
n=p

+ Z Gn (k'-Mn') '(-g p) ™n'kpk~)
n=p

&{I B,"(s,t)+r 'B."(s,t)1(q'-t)'+y (,—o.,)B,"(s,t)(q'+t) "j

+ [(n -n, )(q'+P) „C,+q„C,+k„C,]B,"(s,t).
Here the first sum is over all 0 particles as before and the second sum is over all 1' particles with
G defined by (O~A„' ~anth 1')=v 2G e„. The two parameters z and z ' correspond to the two pos-
sible couplings of 1' meson with pm. Namely, they are related to the so-called S- and D-wave cou-

pling constants bye g~~ '/gD~~' = (y -y ')/2y . For the moment we will leave these parameters unspec-
ified. The five C; terms may be called subtraction constants at k'= ~, and they are necessary in or-
der that (8) satisfies the generalized PCAC condition (4) and (5). In fact, that condition requires that

C, =-C =C, = —gG "y M ', C, = QG "y 'M
n=p
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and

C, +C, =2 Qf P b.
n=0

The pion form factor is obtained by applying again the soft-pion technique to m'(p) and taking the limit
p-0. Then the left-hand side of (9) gives -f, '(m (q')~V„"'~m (q))=f„'F,(t)(q+q')„. In the same
limit, the right-hand side still contains a gauge-noninvariant term

Qf P n[t m ] 'kp.

However, comparison of (7 ) and (5) shows that for any finite t, the above summation is only of the or-
der of m, '/m z' relative to the n =0 term. Thus, assuming that our whole procedure is valid only to
the lowest order in m„', we will neglect this term against gauge-invariant terms. %e obtain then

F, (t) = z'"f, -,
' ( C,bt—+ —'C,--,' Q G "(t-M ') '(y '-2y bt)).

(12)

We notice that if C, IO we have F, -t'~' (t- ~). This may not be of too much concern as our infinitely
rising linear trajectory is certainly an idealization. However, it appears that we will not have the
kind of reciprocity as shown in (7) and (8) as long as C, WO. Hence, we will assume that C, =O. We
can further choose C, =O without any contradiction. From (10), we then have

C. =2 Q f~P~b=2@ 'f.

The last step follows from (3) since the sum for n ~ 1 contributes only a term of order m. ,'/m~' rela-
tive to the n =0 term. Although C, =0 does not necessarily require y~ =0, we will assume this in the
following as a simplest possibility. Then

where

I g
—(x~

(13)

A(t) = —Q G y '(t-M ) (14)

If we take out the o pole in the s channel of (8), we find

(R2i) 'g„,(w (q') Q „' '(0) ~o(q)) = (q+q') „A(t) + (k „term).

Thus A(t) and F,(t) are a pair of chirally conjugate form factors. Now we may take

(15)

(16)

where the normalization has been fixed by (12). From (13) and (16) we have9

(17)

From this we can draw the following conclusions concerning the colliding-beam production of 2p.
(i) There is no p' (1 daughter of an f meson) production. (ii) The cross section should vanish at a(t)
=

& or at the incident energy of -1500 MeV. (iii) The peak value" at t =m~' is ~F, (m~ ) ~

= 8(m /ml' )'.
In terms of the p-y and p-mn' coupling constants f& and gz this corresponds to the value gq „/f =2v2/
m -0.9 instead of 1 in the p-dominance model. If we further use the value of g~ „as determined from
(3), we obtain" f '/4~ =(m~/4f, )'-4. (iv) The cross section for the next resonance [o.(t) =3, the 1
daughter of a g meson -1650 MeV] should be down by a factor ~1 (&}/I'(-4)~'-, relative to p produc-
tion, excluding the width factor and the phase-space factor. Finally, the rms radius is given by

(y') =-', m~ '[g(1)-g(-,')]-(0.6x10 "cm)'.

*Work supported in part by the U. S. Atomic Energy Commission.
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H. Sugawara, to be published; Y. Oyanagi, University of Tokyo Report No. UT16 (unpublished); M. Nanuki and
I. Ohba, Waseda University Report No. WUP-4 (unpublished).

2G. Veneziano, Nuovo Cimento 57A, 190 (1968).
3C. Lovelace, Phys. Letters 28B, 264 (1968).
4Two remarks about Eq. (2). First Z(0) =-~„2. This result is the same as is obtained from SU(3) mass splitting

according to Gell-Mann-Oakes-Renner [M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. 175, 2195 (1968)].
This point was first noticed independently by Griffith lR. W. Griffith, to be published). Second, Eq. (2) can be re-
produced from the Omnes phase representation if we choose 4 =7t. for ~ «(t) &n+ ~ (n =1, 2, 3, ~ ) and 0 other-

Such an unphysical oscillating phase shift would simply indicate that the use of the Omnhs representation in
this case could not be justified. In fact, the resonant states should be considered as quark-antiquark states rather
than the elastic x-7t channel.

~M. AdemoQo, G. Veneziano, and S. Weinberg, Phys. Rev. Letters 22, 83 (1969).
6H. J. Schnitzer, Phys. Rev. Letters 22, 1154 (1969).
VR. Arnowitt, P. Nath, Y. Srivastava, and M. H. Friedman, Phys. Rev. Letters 22, 1158 (1969).
J. L. Rosner and H. Suura, to be published.
The normalization of I" ~ has followed automatically. This is based on our use of the scaling law (3). That is,

the normalization condition on I" ~ is equivalent to the modified Kawarabayashi-Suzuki-Fayyazuddin-Riazuddin rela-
tion (3).

'OWe have added an imaginary part m&F& to the p pole, where I'& is the width of p.
~~We do not quote here any experimental number for comparison because there are so many conflicting experimen-

tal results and analyses that we can almost always find a set of data fitting the theory.
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Vector-meson dominance predicts a characteristic energy dependence of incoherent p
photoproduction from complex nuclei. Measurements of this process were made which
do not conform to these predictions.

The implications of vector-meson dominance
for photon interactions with complex nuclei have
been discussed by several authors. ' A particular
feature of these investigations is a transition
from the low-energy region (g4 GeV), where the
nucleus acts as a transparent object to the pho-
ton, to the high-energy region (&20 GeV), where
the photon appears to be strongly absorbed be-
cause its ability to interact decreases as it pro-
ceeds through the nucleus. The reason for this
decrease is that, as the photon wave propagates
through the nuclear matter, a coherent vector-
meson wave builds up and approaches a magni-
tude such that for subsequent interactions there
is exact cancellation between the following two
amplitudes: one produced by the original photon
wave (a "one-step" process), the other produced

by the vector-meson wave (a "two-step" pro-
cess). At low energy the two-step process be-
comes ne gligible.

We have studied the energy dependence of p'
photoproduction from complex nuclei at a fixed
value of square of momentum transfer,

~ t~ =0.1
GeV . At this value of

~ t~ the "coherent" for-
ward production has dropped to a negligible value
for the nuclei used. ' It is conventional in this
incoherent region to quote the cross section as
A f f the effective number of nucleons contribut-
ing. Naturally, this is the ratio of the cross sec-
tion from the given nucleus to the one-nucleon
cross section (assuming that the proton and neu-
tron cross sections are equal). Formulas for
calculating', ff are given in the papers of Ref. 1,
particularly that of Gottfried and Yennie. Quali-
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