TEST FOR TOLLER, POLES

G. Feldman* and P. T. Matthews Imperial College, London, England (Received 15 July 1969)

The Treiman-Yang analysis is extended to test the validity of the $O(3, 1)$ expansion of a two-body scattering amplitude and related to the M value of a Toller pole.

We consider the high-energy limit of the fiveparticle production amplitudes of the type illustrated in Fig. 1 which is designed to illustrate a convenient choice of variables. Clearly,

$$
k_1 = p_0 + p_1,\tag{1}
$$

and

$$
k_2 = p_0 + p_1 + p_2 = -(p_3 + p_4). \tag{2}
$$

The amplitude is a function of five independent scalar variables which can be taken to be

$$
t_1 = k_1^2, \quad t_2 = k_2^2,\tag{3}
$$

$$
s = (p_1 + p_2 + p_3)^2 = (p_0 + p_4)^2,
$$
 (4)

$$
s_1 = (p_1 + p_2)^2, \quad s_2 = (p_2 + p_3)^2. \tag{5}
$$

By crossing, the amplitude may be given a variety of physical interpretations. In particular we consider the processes

$$
\dot{p}_1 + \dot{p}_2 - \overline{p}_0 + \overline{p}_3 + \overline{p}_4, \tag{a}
$$

and

$$
\bar{p}_0 + \bar{p}_4 - \bar{p}_1 + \bar{p}_2 + \bar{p}_3, \tag{b}
$$

where

$$
\bar{p}_n = -p_n. \tag{6}
$$

In process (a) t_1 is a momentum transfer, t_2 an energy squared, and s_1 the total energy (>s). In process (b) both t_1 and t_2 are momentum transfers and s is the total energy (s_1, s_2) . We actually develop the amplitude for the process

$$
\dot{p}_0 + \dot{p}_1 + \dot{p}_2 - \ddot{p}_3 + \ddot{p}_4,\tag{c}
$$

in which both t_1 and t_2 are energy variables, and

FIG. 1. The configuration of the five-particle amplitude which leads to the chosen sets of scalar variables.

obtain the amplitudes for (a) and (b) by analytic continuation.

In place of the variables s_1 and s_2 we can use θ_1 and θ_2 which are, respectively, the c.m.-system scattering angles in the virtual subprocesses

$$
\dot{p}_0 + \dot{p}_1 - \dot{k}_2 + \ddot{p}_2 \tag{7}
$$

and

$$
k_1 + p_2 - \overline{p}_3 + \overline{p}_4. \tag{8}
$$

In place of s we can use φ which is the angle between the above two scattering planes. The amplitude for process (c) can be written^{1,2} in terms of explicit O(3) functions of θ_1 , θ_2 , and φ as

$$
T = \sum_{J_1, J_2, \Lambda_1} g_3(J_2) d_{\lambda_3 - \lambda_4, \Lambda_2} J_2(\theta_2) \exp(i\Lambda_1 \varphi) g_2(J_2, J_1, \Lambda_1) d_{\Lambda_1 \lambda} J_1(\theta_1) g_1(J_1),
$$
\n(9)

where

$$
\Lambda_2 = \Lambda_1 + \lambda_2, \quad \lambda = \lambda_1 - \lambda_0,\tag{10}
$$

 j_1 and λ_i are, respectively, the spin and spin components of the nth particle,³ and the summation is over the ranges $J_1 \ge |\lambda_1 - \lambda_0|$, $J_2 \ge |\lambda_3 - \lambda_4|$, and

$$
\Lambda_1 | \leq J_1,\tag{11}
$$

$$
|\Lambda_2| \le J_2. \tag{12}
$$

In Eq. (19) the g_i are vertex factors which depend on the variables t and the masses, spins, and spin components of the particles which couple at the vertex. The entire dependence of the amplitude on s_{1} , s_2 , and s is through the angles θ_1 , θ_2 , and φ .

The unit vectors perpendicular to the planes defined by the virtual subprocesses (7) and (8) are

$$
(\beta_1)_{\mu} = \epsilon_{\mu\nu\lambda\rho} \rho_0^{\ \nu} \rho_1^{\ \lambda} \rho_2^{\ \rho} / \Phi^{1/2} (s_1 t_1; m_0^2, m_1^2, m_2^2, t_2)
$$
\n(13)

and

$$
(\beta_2)_{\mu} = \epsilon_{\mu\nu\lambda\rho} p_2^{\nu} p_3^{\lambda} p_4^{\rho} / \Phi^{1/2} (s_2, t_2; t_1, m_2^2, m_3^2, m_4^2),
$$
\n(14)

where Φ is the Kibble function⁴ for the appropriate process ($\Phi = 0$ is the boundary for physical regions). Then

$$
\cos\varphi = -\beta_1 \cdot \beta_2. \tag{15}
$$

Since the four-vector p_n is always timelike the vectors β_1 and β_2 are spacelike for any physical region of the amplitude, and consequently φ is always a real angle in any physical region.

For process (a), Treiman and Yang⁵ made the important observation that if the sum over J_1 in (9) is dominated by a single resonance (Feynman pole) of spin S_1 , then by (11) the summation over Λ_1 is restricted to

$$
|\Lambda_1| \le S_1. \tag{16}
$$

This in turn severely restricts the dependence of T on φ which in this context is known as the Treiman-Yang angle. In particular, if $S_1 = 0$, this shows that the amplitude is independent of φ . This restriction was proposed as a test of the peripheral model for the production of a resonance of mass $t₂$ [in the s₁ channel of subprocess (7); $p_1+p_2+p_0+k_2$], which subsequently decays into particles $\overline{3}$ and $\overline{4}$.⁶

We now generalize this argument to show how observations of the φ dependence can be used to test O(3, 1) expansions of scattering amplitudes and to determine the quantum numbers of Toiler poles. We remark that the last three factors of (9) (summed over J_1) constitute that t_1 -channel O(3) expansion of the scattering amplitude⁷ for the subprocess (7) :

$$
\sum_{J_1} g_2(J_2, J_1, \Lambda_1) d_{\Lambda_1, \lambda}^{J_1}(\theta_1) g_1(J_1) \equiv \langle J_2, \Lambda_2, j_2, \lambda_2 | T_1(s_1, t_1) | j_0, \lambda_0, j_1, \lambda_1 \rangle \equiv T_1.
$$
\n(17)

This amplitude can alternatively be expanded in terms of $O(3, 1)$ functions^{8, 9};

$$
T_1 = \sum d_{\Lambda_1, m} J(\theta^L) d_{J, m, j} M_1 \circ 1(\epsilon) d_{m, \lambda} J(\theta^R) T_{J, j} M_1 \circ 1(t_1; J_2, \Lambda_2, j_2, \lambda_2, j_1, \lambda_1, j_0, \lambda_0),
$$
\n(18)

where (M_1, σ_1) specify an O(3, 1) representation. The summation is over the ranges

$$
|M_1|, |m| \leq \min(J, j), \tag{19}
$$

and

$$
|j_0 - j_1| \le j \le j_0 + j_1,\tag{20}
$$

$$
|J_2 - j_2| \le J \le J_2 + j_2,\tag{21}
$$

and it is, of course, assumed that there is some range of σ for which the $O(3, 1)$ expansion represents the amplitude in the region in which s_1 is an energy variable and t_1 a momentum transfer [i.e., processes (a) and (b)]. Further, 10

$$
\cosh \epsilon = p_1 \cdot p_2 / m_1 m_2,\tag{22}
$$

$$
\theta^{L} = \theta(k_1, p_1; p_2), \quad \theta^{R} = \theta(k_1, p_2; p_1), \tag{23}
$$

and conservation of parity requires that the summation be over the representations $|M|, \sigma_1$ and $-|M_1|, \sigma_1$.

We now consider (18) in the limit $s_1 \rightarrow \infty$ and t_1 small which is in the physical region of processes (a) and (b). In this limit the behavior of the d functions in (18) is¹¹

$$
s_1^{\sigma_1-1|m-M_1|}t^{\left|\Lambda_1+m\right|/2}t^{\left|\lambda+m\right|/2}.
$$
 (24)

If the range of real values of σ_1 is bounded and if the limit $s_1 \rightarrow \infty$ can be taken inside the summation in

(18), the leading s, dependence of $T₁$ is given by that term in the summation for which¹²

$$
m = M_1. \tag{25}
$$

Substituting this behavior of T_1 into (9) we see that the leading behavior for small t_1 comes from that term in the summation over Λ_1 for which

$$
\Lambda_1 = \pm |M_1| \tag{26}
$$

This is turn implies that the leading behavior of T in this limit is

$$
T_{s_1 \to \infty, t_1 \to 0} = \sum_{M_1 = O(1/2)}^{J_0 + J_1} s_1^{\sigma_1 - 1} \{ f_M(s_2, t_2) \exp(iM_1 \varphi) + f_{-M}(s_2, t_2) \exp(-iM_1 \varphi) \},
$$
\n(27)

which is the generalization of the Treiman-Yang result.¹³ Clearly if the expansion of $T^{}_{1}$ is dominate which is the generalization of the Treiman-Yang result.¹³ Clearly if the expansion of $T^{}_{1}$ is dominate by a single Toller pole with quantum number M_1 this completely determines the φ dependence of the amplitude in the high-s₁ limit (M_1 plays a role very similar to the spin S₁ of the Feynman pole in the Treiman-Yang argument). In particular, if the M value of the Toller pole is zero the amplitude in this limit is independent of φ .

For resonance production processes of type (a) the information required from the experimenter is exactly the same as for the Treiman-Yang analysis. Only the interpretation is different. For example, in the process

$$
\pi N \to N \rho \to N \pi \pi
$$

independence of the Treiman-Yang angle now indicates the exchange of a leading Toller pole with M = 0, rather than the peripheral exchange of a pion; an observed dependence in (27) of M_{1} > 1 would cast doubt on the validity of $O(3, 1)$ expansions.

Similar considerations apply to process (b), where now, however, $t₂$ is spacelike and the relevant angle φ is the angle between the (p_0, \bar{p}_1) and the (p_4, \bar{p}_3) planes in the frame in which $\bar{p}_2 = 0$. igle φ is the angle between the $(\rho_0, \bar{\rho}_1)$ and the $(\rho_4, \bar{\rho}_3)$ planes in the frame in which $\bar{\vec{p}}_2 = 0$.
Present experimental data are not inconsistent with such O(3, 1) expansions. See, e.g., Berger.¹⁴

 $\rm ^{4}T.$ W. B. Kibble, Phys. Rev. 117, 1159 (1960).

 $5S.$ B. Treiman and C. N. Yang, Phys. Rev. Letters 8 , 140 (1962).

6Two generalizations of this argument have been given which are essentially trivial if we recognize alternative interpretations of the angles φ and θ_2 . From the covariant definition of φ given in (15) and the conditions (1) and (2) it is immediately obvious that (θ_2, φ) are the polar angles of the vector \tilde{p}_3 in the rest frame of the "decaying"
particle k_2 , where the z axis is the direction of \tilde{p}_2 and the y axis is the directio Jackson, Nuovo Cimento 34 , 1644 (1964). Thus if in process (a) the summation over J_2 is dominated by a single resonance of spin S_2 (the spin of the produced particle in the Treiman-Yang argument), then by (12) we have the additional restriction $|\Lambda_2| \leq S_2$. See K. Gottfried and J.D. Jackson, Nuovo Cimento 33, 310 (1964). The second generalization is to the process (b) in the multi-Regge model in which the summations over J_1 and J_2 in (9) are analytically continued by a Sommerfeld-Watson transform and assumed to be dominated by Regge poles at $\alpha_1(t_1)$ and $\alpha_2(t_2)$. [See T. W. B. Kibble, Phys. Rev. 131 , 2282 (1963).] For values of t_1 which correspond to a physical particle for which $\alpha_1(t_1) = S_1$, by (11) the dependence on φ in (9) must again satisfy the condition (16), $|\Lambda_1| \leq S_1$. I. T. Drummond, in Proceedings of the International Conference on High Energy Physics, Lund, Sweden, 1969 (to be published).

⁷The amplitude (17) is not precisely the t_1 -channel helicity amplitude for subprocess (7). Although λ_0 and λ_1 are the correct helicity labels, Λ_2 and λ_2 are spin components in the rest frame of "particle" k_2 . However, the choice of axis is such that a pure boost in the direction of \overline{p}_2 in this frame takes one to the "c.m." frame $\overline{k}_1=0$, and thus Λ_2 and λ_2 are the correct c,m.-frame helicity labels. Note that the first three factors in (9) represent the decay of the " k_2 resonance". The amplitude for a process of type (a) was written in this form as a product of a scattering

On leave of absence from the Johns Hopkins University, Baltimore, Md. Work supported in part by the National Science Foundation.

 ${}^{1}N$. F. Bali, G. F. Chew, and A. Pignotti, Phys. Rev. 163, 1572 (1967); M. Toller, Nuovo Cimento 37, 731 (1965). ²G. Feldman and P. T. Matthews, "The High Energy Limit of Production Amplitudes" (to be published), and for details of such expansions, their work entitled "General Expansions of a Scattering Amplitude" (to be published).

³The spin components λ_0 and λ_1 are the helicities of particles "0" and "1," respectively, in the (p_0, p_1) c.m. frame (i.e., $\vec{k}_1=0$) and $\lambda_2, \lambda_3, \lambda_4$ are the helicities of particles "2", "3," and "4" in the (\vec{p}_3, \vec{p}_4) c.m. frame (i.e., $\vec{k}_2=0$). See Feldman and Matthews, Ref. 2, for details, where however in place of process (c) the formation process $p_0 + p_1 + p_2$ $+p_3-\overline{p}_4$ is discussed.

amplitude (17) and a decay amplitude with these helicity labels by Gottfried and Jackson, Ref. 6.

⁸R. Delbourgo, A. Salam, and J. Strathdee, Phys. Rev. 164, 1981 (1967); G. Cosenza, A. Sciarrino, and M. Toller, Nuovo Cimento 57, 253 (1968); G. Domokos and G. L. Tindle, Phys. Rev. 165, 1906 (1968); W. R. Frazer, F. R. Halpern, H. M. Lipinski, and D. R. Snider, Phys. Rev. 176, 2047 (1968).

9See also Feldman and Matthews, Ref. 2, part 2, for a general review and further references.

¹⁰If a, b, and c are any four-vectors (c timelike), we denote by $\theta(a, b, c)$ the angle between a and \bar{b} in the frame in which $c=0$. (See, e.g., Feldman and Matthews, Ref. 2, part 2, Appendix.)

¹¹See, e.g., K. M. Bitar and G. L. Tindle, Phys. Rev. 175, 1835 (1968) or Feldman and Matthews Ref. 2, part 2. ¹²We clearly also have the restriction $\lambda = M_1$, which determines which of the helicity amplitudes of the p_1, p_0 system survives at $t_1=0$.

¹³If the sum over J_2 in (9) is dominated by a single resonance of spin S_2 , then $M_1 \leq \min(j_0+j_1, S_2+j_2)$. 14 E. L. Berger, Phys. Rev. Letters 21, 701 (1968).

VENEZIANO- TYPE FORM FACTORS FOR THE PION*

H. Suura

School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota (Received 4 August 1969)

The scalar, pseudoscalar, vector, and axial-vector form factors of the pion are derived from (i) the Veneziano amplitudes for $\pi^+\pi^- \to \pi^+\pi^-$ and $\pi^+\pi^- \to A_1^+\pi^-$, (ii) the hypothesis of the partially conserved axial-vector current, and (iii) the requirement that a chirally conjugate pair of form factors should exhibit similar structures. The resulting form factors feature an infinite sequence of poles corresponding to daughters of specific spin and parity, and definite signature. Various predictions on the clashing-beam production of 2π and on ρ -meson coupling constants are given.

Recently, the Veneziano-type form factors for the pion have been discussed by several authors, ' but these fail to satisfy a natural requirement that a chirally conjugate pair of sources, like the vector current V_μ^a and the axial-vector current A_μ^a , should couple in more or less symmetric ways to an infinite number of particles with specific spin and parity, whose existence is one consequence of the Veneziano model.²

To illustrate our point, let us take for example the following off-shell $\pi\pi$ scattering amplitude which is consistent with the condition of partially conserved axial-vector current (PCAC) and which reduces to the Veneziano-Lovelace' amplitude on the mass shell:

$$
\langle \pi^-(q') | \partial^{\lambda} A_{\lambda}^{(-)}(0) | \pi^+(p), \pi^-(q) \rangle = \sqrt{2} f_{\pi} m_{\pi}^{2} (k^2 - m_{\pi}^{2})^{-1} \beta_0 B_1^{1,1}(s,t), \tag{1}
$$

where

$$
B_k{}^{i,j}(s,t) \equiv \Gamma(i-\alpha_s)\Gamma(j-\alpha_t)/\Gamma(k-\alpha_s-\alpha_t).
$$

Here k is the momentum of the off-shell π^+ meson and $s = (p+q)^2$, $t = (k-p)^2$, and $u = (q-k)^2$. $\alpha_s = \alpha(s)$. represents the degenerate ρ -f trajectory and is given by $\alpha(s) = \frac{1}{2} + b(s - m_{\pi}^2)$ with $b^{-1} = 2(m_{\rho}^2 - m_{\pi}^2)$. f_{π} is the pion decay constant and $\beta_0 = g_{\rho \pi \pi^2}$. Now by continuing to $p \to 0$ by means of the standard soft-pion technique the left-hand side of (1) reduces to the pion matrix element of the so-called Σ term $[A_0^{\;(+)}(x), \,\partial^\lambda A_\lambda^{\;(-)}(0)]_{x_0=\,0}=2i\delta^3(x)\Sigma(0).$

$$
[A_0^{(+)}(x), \,\partial^{\lambda} A_{\lambda}^{(-)}(0)]_{x_0=0} = 2i\delta^3(x)\Sigma(0),
$$

On the right-hand side, we have $s = u = m_{\pi}^2$, $t = k^2$, and using $\alpha(m_{\pi}^2) = \frac{1}{2}$ we obtain⁴

$$
\langle \pi^-(q')|\Sigma(0)|\pi^-(q)\rangle \equiv \tilde{\Sigma}(t) = -\frac{m_\pi^2}{\sqrt{\pi}}\frac{\Gamma(1-\alpha_t)}{\Gamma(\frac{3}{2}-\alpha_t)}.
$$
 (2)

Here we have used a scaling law'

$$
\pi f_{\pi}^2 \beta_0 b = 1 \tag{3}
$$

in order to obtain the above normalization. Thus, in spite of our original assumption expressed in (1), namely, that the pseudoscalar source $\partial^{\lambda} A_{\lambda}(-)(x)$ couples only to the π meson, we obtain the result that its chiral counterpart Σ couples to all 0⁺ daughters of the ρ -f trajectory. We consider this asym-