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The Treiman-Yang analysis is extended to test the validity of the O(3, 1) expansion of
a two-body scattering amplitude and related to the M value of a Toller pole.

We consider the high-energy limit of the five-
particle production amplitudes of the type illus-
trated in Fig. 1 which is designed to illustrate a
convenient choice of variables. Clearly,

ky=Po*hy, (1)
and
k2=Po+P1+Pz=‘(P3+P4)- (2)

The amplitude is a function of five independent
scalar variables which can be taken to be

t1=k12’ t2=k22: (3)
S=(pythathe)?= (poths)?, (4)
$17 (P th,)%, S,=(py+ps)> (5)

By crossing, the amplitude may be given a vari-
ety of physical interpretations. In particular we
consider the processes

DytPa~Dothsthy, (@)
and

Dotps =D PPy, (b)
where

Pn=bn- (6)

In process (a) ¢, is a momentum transfer, ¢, an
energy squared, and s, the total energy (>s). In
process (b) both ¢, and ¢, are momentum trans-
fers and s is the total energy (>s,,s,). We actual-
ly develop the amplitude for the process

both,*D, -’53‘*‘54, (c)

in which both #, and £, are energy variables, and ‘

FIG. 1. The configuration of the five-particle ampli-
tude which leads to the chosen sets of scalar variables.

obtain the amplitudes for (a) and (b) by analytic
continuation.

In place of the variables s, and s, we can use
6, and 6, which are, respectively, the ¢c.m.-sys-
tem scattering angles in the virtual subprocesses

po+p1~k2+p_2 (7)
and
k1+p2 —'53 +454' (8)

In place of s we can use ¢ which is the angle be-
tween the above two scattering planes. The amp-
litude for process (c) can be written'? in terms
of explicit O(3) functions of 6,, 6,, and ¢ as

T= ZJ;A gs(Jz)dxs—x4,A212(92) eXp(iAl(p)gz(Jz:J1:A1)dA1Xj1(91)g1(J1), (9)
Syl
where
A=A 42, X=X, (10)

J, and A; are, respectively, the spin and spin components of the nth particle,® and the summation is

over the ranges J, 2| X, —x,[, J,>|2;-2,], and
Al <d,,
[A,l <d,.
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In Eq. (19) the g, are vertex factors which depend on the variables ¢ and the masses, spins, and spin
components of the particles which couple at the vertex. The entire dependence of the amplitude on s,,
s,, and s is through the angles 6,, 6,, and ¢.

The unit vectors perpendicular to the planes defined by the virtual subprocesses (7) and (8) are

(Bl)p = eyu)\ppoyp1>\pzp/q’ V2(s s moz; m12, mzzy t,) (13)
and
(Bz)u T €upn szps)‘p4p/¢1/2(szy lastyy mzz’ msz: m,?), (14)
P

where @ is the Kibble function* for the appropriate process (& =0 is the boundary for physical regions).
Then

cos® = =B, B, (15)

Since the four-vector p, is always timelike the vectors 8, and B, are spacelike for any physical region
of the amplitude, and consequently ¢ is always a real angle in any physical region.

For process (a), Treiman and Yang® made the important observation that if the sum over J, in (9) is
dominated by a single resonance (Feynman pole) of spin S,, then by (11) the summation over A, is re-
stricted to

[A,]<S,. (16)

This in turn severely restricts the dependence of 7 on ¢ which in this context is known as the Trei-
man-Yang angle. In particular, if S,=0, this shows that the amplitude is independent of ¢. This re-
striction was proposed as a test of the peripheral model for the production of a resonance of mass ¢,
[in the s, channel of subprocess (7); p,+p,~P,+k,], which subsequently decays into particles 3 and 4.°

We now generalize this argument to show how observations of the ¢ dependence can be used to test
0(3, 1) expansions of scattering amplitudes and to determine the quantum numbers of Toller poles. We
remark that the last three factors of (9) (summed over J,) constitute that #,-channel O(3) expansion of
the scattering amplitude’ for the subprocess (7):

Ehgz(Jz’ Jy, Ady v )\jl(el)gx(J1)E<Jz, Agy s Aol Ty(sy, tl)IjO, Aoy J1s A= Ty 17

This amplitude can alternatively be expanded in terms of O(3, 1) functions® °;
T, :Ed/\l-mj(GL)dJ,m,le’ol(e)dm, 3 BR)TJ,/‘MI'Ol(tﬁ Jas B asJas XasT 15 M1y Jos Ro)s (18)

where (M,,0,) specify an O(3, 1) representation. The summation is over the ranges

| M,|,|m|<min(/,j), (19)
and

|Fo=i1lSi<do+iy, (20)

| Jy=ipl S I S dy+7,, (21)

and it is, of course, assumed that there is some range of ¢ for which the O(3, 1) expansion represents
the amplitude in the region in which s, is an energy variable and #, a momentum transfer [i.e., pro-
cesses (a) and (b)]. Further,®

coshe=p -p,/m m,, (22)
05 = 0(k,,p,505), 7= 0(k,,0050,), (23)

and conservation of parity requires that the summation be over the representations | M|,0, and -| M, |,0,.
We now consider (18) in the limit s, ~« and #, small which is in the physical region of processes
(a) and (b). In this limit the behavior of the 4 functions in (18) is™!

3101—1|m'M1ft|A14mI/2tl Aim|/fe (24)

If the range of real values of ¢, is bounded and if the limit s, ~« can be taken inside the summation in
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(18), the leading s, dependence of T, is given by that term in the summation for which'?
m=M,. (25)

Substituting this behavior of T, into (9) we see that the leading behavior for small ¢, comes from that
term in the summation over A, for which

A,=x|M|. _ (26)

This is turn implies that the leading behavior of 7 in this limit is
Jot/1
Tsy—w,ty—~0" 2 3101_—1{fM(32; t5) €XP(EM, @) +f _ m(S,, 15) exP("iMl(p)}, (27)
1=00/2)

which is the generalization of the Treiman-Yang result.’® Clearly if the expansion of 7, is dominated
by a single Toller pole with quantum number M, this completely determines the ¢ dependence of the
amplitude in the high-s, limit (M, plays a role very similar to the spin S, of the Feynman pole in the
Treiman-Yang argument). In particular, if the M value of the Toller pole is zero the amplitude in this
limit is independent of ¢.

For resonance production processes of type (a) the information required from the experimenter is
exactly the same as for the Treiman-Yang analysis. Only the interpretation is different. For exam-
ple, in the process

7N —Np - N7rw

independence of the Treiman-Yang angle now indicates the exchange of a leading Toller pole with M
=0, rather than the peripheral exchange of a pion; an observed dependence in (27) of M, >1 would cast
doubt on the validity of O(3, 1) expansions.

Similar considerations apply to process (b), where now, however, ¢, is spacelike and the relevant
angle ¢ is the angle between the (p,,5,) and the (p,,p,) planes in the frame in which p,=0.

Present experimental data are not inconsistent with such O(3, 1) expansions. See, e.g., Berger.™
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The scalar, pseudoscalar, vector, and axial-vector form factors of the pion are de-
rived from (i) the Veneziano amplitudes for n*r~ — r*r~ and 7*r~ —A *r~, (ii) the hy-
pothesis of the partially conserved axial-vector current, and (iii) the requirement that a
chirally conjugate pair of form factors should exhibit similar structures. The resulting
form factors feature an infinite sequence of poles corresponding to daughters of specific
spin and parity, and definite signature. Various predictions on the clashing-beam produc-
tion of 27 and on p-meson coupling constants are given.

Recently, the Veneziano-type form factors for the pion have been discussed by several authors,*
but these fail to satisfy a natural requirement that a chirally conjugate pair of sources, like the vec-
tor current V,* and the axial-vector current A 4%, should couple in more or less symmetric ways to
an infinite number of particles with specific spin and parity, whose existence is one consequence of
the Veneziano model.? )

To illustrate our point, let us take for example the following off-shell 77 scattering amplitude which
is consistent with the condition of partially conserved axial-vector current (PCAC) and which reduces
to the Veneziano-Lovelace® amplitude on the mass shell:

@~ (g)* A, 0 [T (p), T (q)) =V ym o 2k~ 1) "B B (s, t), 1)
where
B (s, t)=T(i~a,)T(j-a,)/T(k-a~-a,).

Here % is the momentum of the off-shell 7* meson and s = (p +9)?, t=(k-p)?, and u =(g-k)%. as=a(s)
represents the degenerate p-f trajectory and is given by a(s) =3 +b(s—m,2) with b™!= 2(mp*=m ). fr
is the pion decay constant and B, = gP”z. Now by continuing to p - 0 by means of the standard soft-pion
technique the left-hand side of (1) reduces to the pion matrix element of the so-called T term,

(4, (x), 8*4," -)(0)])(0 = 0=2:0°(x)Z(0).
On the right-hand side, we have s =u=m,?% t=F% and using a@m %) =3 we obtain*

@~ @2l ~(@)=5) = 2= g_g%; o

Here we have used a scaling law®
Tf 1 2Bob =1 (3)

in order to obtain the above normalization. Thus, in spite of our original assumption expressed in
(1), namely, that the pseudoscalar source 8*A,‘™’(x) couples only to the 7 meson, we obtain the result
that its chiral counterpart = couples to all 0* daughters of the p-f trajectory. We consider this asym-
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