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of the four-momentum transfer between the incident
neutron and outgoing proton. Note that at fixed s, !@I
= idu).
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A model for particle scattering amplitudes is based on the harmonic-oscillator Green's
function. The model is Begge behaved, and in first approximation is a zero-width theory.
The derived amplitudes are very similar to Veneziano n-point functions although they
lack duality.

We present a model scattering matrix based on
a relativistic harmonic oscillator. The interest
in the model stems from its similarity to the
Veneziano model in the following respects: (i) It
contains an infinite spin-mass spectrum identi-
cal to the Veneziano model. However, it should
be remarked that the degeneracy at each daughter
site is probably different. (ii) The lowest order
of perturbation theory is a zero-width approxima-
tion. (iii) The model is multi-Regge behaved.
(iv) By appropriate choice of a single parameter
the coupling scheme of the leading trajectory is
identical to that in the Veneziano model. (v) The
Chan' representation for the n-point function is
modified in a remarkably simple manner in the
oscillator model.

Questions of renormalization, finite-width cor-
rections, off-shell continuations, and local cur-
rents in the model are under investigation by
Frye, Gallardo, and the author.

Consider the Bethe-Salpeter equation for a
quark-antiquark pair,

Letting m'-~ so that U/m'-m' remains finite
and making a change of variables to X=—2(x, + x,)
and x=(x,-x,) gives

[-, «+ 2 + V(x)]g(x, X) =0. (2)

A solution with total four-momentum P has the
form e'~" y(x). Inserting this in Eq. (2) and per-
forming a Wick rotation gives the O(4)-symmetric
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equation

1 1+ 2V P=~p P.
~X ~X

We choose 2 V(x) =x' to give the four-dimensional oscillator equation and the mass quantization con-
dition &p'= &M'=2n 1. The solutions are parametrized by four excitation integers n„n„n„and n,
and are of the form

4

p (x) =e «2' II II . (x/)(2 'n;!) '"
1=1

or equivalently, in momentum space'

~.(P) = II ""&.(P;)(2';t)-'",

where p = —,(p,-p, ) and p; is its ith component. Using the generating function for H gives

(4)

(B/Bn )///e clj cj + 2 QjPj

PI1(p) II
(n t2B)1/g (5b)

Assume now that the quarks are coupled to a scalar neutral massless field. The vertex connecting
two states of the oscillator and an emitted field quantum is constructed from the graph in Fig. 1 with
the following rules: The bubble vertices are replaced by a wave function y which is best expressed
in the form of Eq. (5b), a point vertex is a coupling constant, and a quark line usually given by 1/(k
-m') is a constant. in the limit m'-~. The vertex is then given by a generating function of two four-
vectors, F(n, P), such that the transition between the states n; and m, is

Qg 8 IBJ

F'(n P)(2 /'"'/n!m !) '".
Bn BP.i J

The integrations implied by the graph in Fig. 1 are all Gaussian integrals and yield

F(n, P) = exp[(n+ P)k/2 2nP]-

(8)

(7)

for k satisfying the mass-shell condition k' =O.
Next consider the scattering of a field quantum as shown in Fig. 2. The rules for such a graph are to

insert the expression (7) at the oscillator-quantum vertices and sum over intermediate oscillator
states with the factor 1/(p -8n-4). For external oscillators in the ground state this gives

B B B. j, / (2 n!) ' k, k, 1

Bn Bp p'-Sn-4 ~ 8 (p'-Sn-4)n! ' (8)

It is convenient to eliminate the 8 by change of momentum scale. Equation (8) can be summed by use
of the identity

J g d ~ = (A + ].)-'

to give
1
g p —1/2

( «) / y2/2dg

FIG. 1. Kinematics for the oscillator-quantum vertex, FIG. 2. Kinematics for the four-point function.
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where t» = 2k,.k„which is very similar to the Veneziano amplitude in which the (e ) '» ' is replaced
by (I-x)-'».

Actually the t»/2 can be replaced by t» as the ratio of the two quark masses is not 1.
The five-point function is similarly evaluated. The kinematics is shown in Fig. 3. Again a change of

momentum scale has been made.
a g g m 1

Bn 8 p By 85 n!m!2' '"'(P,'-n--, )(P,'-m-2)
t

~3~2
= X -»'-"2X -»'-'" (

—Xg~a)- (kg + k2 +;If') / 2
1 2 ~ZX2

This is almost the Veneziano five-point function.
The replacement of the e

'"
by (1—x ) would

make them identical.
The following generalization can be proved: If

the Chan representation' of the n -point function
is written as

(
—X~X~" ~

) (
—Xg,xg ~

)
a

(
—x~x~ )(

—x~ ~ ~ ~

)
' (12)

Actually this model is quite poor. There are
an infinite number of ghost poles probably due to
the action-at-a-distance nature of the oscillator
force. We conjecture that this disease can only
be removed by eliminating the action at a dis-
tance by allowing the force to be transmitted
through some sort of continuum. For example
we might replace the single "spring" by the con-
tinuum limit of a chain of springs. The effect
will be to increase drastically the degeneracy of
the levels. For example, for a chain of springs
fixed at one end with Hamiltonian Qx + (x;-x;,)',
the problem is still separable in the four direc-
tions of oscillation. However, instead of a single
creation operator and occupation number for
each direction we have a countable infinity corre-
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FIG. 3. Kinematics for the five-point function.

with (X,. X ) being a complete set of indepen-
dent dual parameters, and if the T's are given by

(1—X.X . )(1-XIX, )T —. 1 I

(1-X g )(1-X . )
'

then the corresponding oscillator scattering am-
plitude is related by changing Eq. (11) to

!
sponding to the fundamental mode and all its har-
monics. If n; is the occupation number for the
ith harmonic, the energy for a given direction is
gin;. If we consider a given level n, there are
many more ways to excite energy n. The sim-
plest is the set of states formed by the action of
n creators for the fundamental modes. The set
of such states forms the space of symmetric ten-
sors of rank n and therefore carries angular mo-
mentum &n. The other ways of exciting energy
n involve fewer creation operators and therefore
correspond to tensors of rank less than n. Hence
the huge degeneracy implied by such a model ef-
fects only daughter poles. Since it is not known
how degenerate the daughters in the Veneziano
model have to be we cannot rule out such a mod-
el. It is of great interest to determine what de-
generacy is required to cause the daughter poles
to factorize.

The author acknowledges the help of Professor
Graham Frye in some of the calculations report-
ed here.

Note added in proof. —The problem of factoriza-
tion of Veneziano amplitudes has recently been
solved by Fubini and Veneziano, ' Bardakqi and
Mandelstam, and this author. ' The solutions
agree exactly with the form of spectrum postulat-
ed on the basis of a harmonic continuum model
with cyclic boundary conditions, or in other
words, a rubber band.
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