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A fully relativistic eikonal expansion is discussed. The connection with the high-ener-
gy behavior of elastic scattering, especially for quantum electrodynamics, is examined,
and the relevance of the results for Regge asymptotic behavior is investigated.

In an interesting paper in this journal Cheng and Wu' have considered the high-energy behavior of
scattering processes in quantum field theory. They examined certain sets of Feynman graphs for
spinor quantum electrodynamics which may be described as generalized ladders (they include all man-
ner of crossed graphs also) in the channel whose energy is being taken large. Subsequently, Chang
and Ma’® have demonstrated, by use of very clever techniques for exhibiting the high-energy behavior
of perturbation-theory graphs, that the subsets of graphs under consideration can be summed to the ei-
konal form of Moliere and Glauber.® This is consistent with the previous examination of the same set
of graphs by Torgerson.*

We would like to show here a straightforward method for deriving the results of Refs. 1 and 2 which
clearly exhibits the “eikonal” nature of the high-energy approximation and indicates how one may sys-
tematically correct this approximation. The technique we employ is that of functional derivatives
which has been developed by Schwinger.® This procedure allows one to emphasize the striking simi-
larity between the eikonal expansions in the nonrelativistic and relativistic cases.

Let us consider, then, spinless particles of mass m (we will discuss the transition to spinor elec-
trodynamics later) undergoing an elastic collision, with forces mediated by spinless objects of mass
f. The sum of all Feynman graphs of the “ladder” type as shown in Fig. 1 leads to the T-matrix ele-
ment
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where G(A) is the Green’s function for a spinless particle in an external scalar potential (source) A:
G™Y(A) =P2-m2-A(X) +ie, (2)

while the P and X are four-dimensional noncommuting operators satisfying [X,,, P,,]=z'g”,,. Finally X
expresses the exchange of the intermediate boson,

m=exijd4 dy 5A( )D(y =y )GA( )7 (3)

with D(x) the usual causal propagator
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FIG. 1. The class of perturbation-theory graphs summed by the expression Eq. (1).
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This form for the T matrix is only a convenient bookkeeping for the sum of Feynman graphs it repre-
sents. It is cast, however, in a manner conducive to the displaying of the eikonal expansion.
Using the operator identity® exp(A +B) = (expA)T(expjjdte~4'Be?), we can write

(2__1Ti)«;T(p2', pz; p1’; p1)64(p2, +pz"1)1"—p1) =3c<pzl Y‘(‘4) Ip1>(p2'|T(A ’) I p1'>IA =A’=0> (5)
with
7(A) = T{exp[~i [, A(X-2P7)ar]}A(X), (6)

and a similar term for 7(4’). The guiding principle of the eikonal approximation is that a very ener-
getic particle can hardly be deflected from its path by reasonable interactions. It is natural then to
attempt a perturbation expansion around the direction of the high-energy particle where the perturba-
tion terms will be, essentially, responsible for its deviation from a straight path.

The first term in the eikonal expansion is obtained by replacing the operators P and P’ by p =5( b,
+p;) and p’=3(p,’ +p,’). The corresponding eikonal 7 matrix 7 is given by
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Carrying out the functional derivatives implied by X, by noting it is a shitt operator in A and A/, leads
at once to

(2.”)4 TE(pz 3?27?1 1p1)64(p2 +P2 _p1_p1 )
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This is analogous to the case of potential scattering with D(x) as a generalized “potential.” Note that
relativistic covariance has been maintained throughout.

Now energy-momentum conservation can be factored out by integration over x +x’. Next notice that
p,~p,=—(p,"-p,") is orthogonal to both p and p’ so we may set x—x’=b—-2po +2p’c’, where b is a two-
dimensional vector. Two integrations may then be carried out to cast (8) into its final form:

exp[ d’q e—iq'b]
em? [qlP+p?

Tx(s, t) =—2i5 [d?b e~ 1(P1=P2)" b

1, (9)

where (P,-P,)?=~¢, and §=s[1-(t +4m?)/s['/%, which is effectively s.

A few remarks are now in order about this leading eikonal expression. (1) To appreciate (9) it is
good to remember that it can be thought of as a resummation of the leading terms in s to each order in
(£%” of the sum of corresponding Feynman graphs. Cancellation among diagrams of the same order
occurs. (2) In the scalar case we have been investigating it can easily be shown that in (9) the first
Born approximation (behaving as a constant as s -~ «) indeed is the leading term. This is in precise
analogy to potential scattering. (3) In the present approach the addition of self-interactions or “radi-
ative corrections” amounts to adding diagonal terms to the functional differentiation operator X. One
might imagine, after performing the usual mass and charge renormalizations, evaluating such effects.
(4) The “potential” D(x) can clearly be modified to include the exchange of any spin particle or to ex-
hibit the effects of “vacuum polarizations” on the exchanged line —all without any alteration in the pre-
ceding argument. (5) In the interesting case of vector exchange the eikonal expansion becomes indeed
relevant since all terms in the set of graphs become comparable. In electrodynamics of spinor parti-
cles one replaces (2) by

P +m—eA(X)
[P-eA(x) P-m? +ie
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and obtains a result only slightly modified from (9) as the following heuristic argument shows. At
high energy only the convective part of the current survives, so that in the case of charged spin-3 par-
ticles no spin flip occurs. This amounts to saying that exchanging a photon of virtual momentum ¢
yields a factor —(ee’)4p’splg>~u2+ie]™! (4 is an infrared cutoff), instead of g?[¢?>—pu2+i€]™* in the sca-
lar case. The asymptotic form of the series of perturbation graphs of Fig. 1 for spinor electrodynam-
ics is then

x [—ieej—@— e-ﬁ.g} 1l (10)
i B CO S 1 KT

where the A; are the particle helicities, and a conventional normalization of Dirac particles has been
inserted. For u -0 this result can be expressed, apart from the usual phase, as
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which displays—as is perhaps not unexpected —considerable resemblance to Coulomb scattering.

Now we come to the correction terms to the usual eikonal approximation.” There are several vari-
ants of these corrections, all of which agree for small £, We shall exhibit the most straightforward (if
not the most elegant) one and comment on another later. As we have stated the eikonal expansion is a
perturbation series around P=p, With this in mind one may readily demonstrate that

TA)=Tz(A) +AG,(A)HG,(A)A +AG,(A)HG,HG,(A)A ++ e+, (12)
with

H=—(P_p)2, (13)
and '
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=i ar expl-i [, A(X~2po)do] TP PP m2), (14)

This corrected form of 7(A) leads, via (5), to a corrected T(p,’, py; P,’, P,). The first 67z to the
leading eikonal expression may be put in the form (on dropping terms which are negligible for ¢ small)

0Tz (ps' b ', p) = Jaty P75 el [ P [ “aoD o -2p7+ 29701}

X D},{exp[—fo:odf’f:do'D(y—2p'r' +2p'0") -1}
+term with (p, —p,’, pz-—pz’):“a, o (15)

Equation (15) is a fully relativistic version of the Saxon-Schiff® correction to the eikonal. If one wish-
es to use the eikonal expansion for large ¢ he may proceed precisely along the path laid out by Sugar
and Blankenbecler and make a symmetric expansion about both the initial and final directions. All
their results, transcribed into four-dimensional language, go through. In particular one learns that
if the “potential” falls as a power of £, then the two terms of the expansion are an excellent approxi-
mation for all £, If one were to imagine a generalized potential of the Regge form s*®) with the popu-
lar linear trajectories, then many terms of the expansion must be accounted for away from ¢ =0,
From the point of view we have presented here it is clear why Regge behavior does not transpire.
We have, in essence, a relativistic transcription of potential scattering for large s and ¢ fixed. In po-
tential theory Regge-like asymptotic forms come for large t and s fixed giving the usual t*¢), There
is without doubt a class of diagrams in the models we have considered here which yield ¢-channel lad-
ders, straight and crossed, whose asymptotic behaviors surely sum up to s*® . Whether the eikonal
graphs or the Regge graphs dominate has certainly not been determined here, nor until we learn to
extract more cleanly the asymptotic behavior of the ¢-channel ladders will we be in a position to
choose. As a speculation along these lines one might imagine that the Pomeranchuk or diffractive
contribution to high-energy scattering comes from the eikonal graphs while the {-channel ladders
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yield the usual moving trajectories.
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By including Ky in the background which underlies K;, S-matrix unitarity can be used
to derive a set of constraints on the partial decay amplitudes of the two resonances.
The only constraint which does not explicitly involve the strong-interaction background
phases is equivalent to the Bell-Steinberger sum rule.

In 1965, Bell and Steinberger! derived a “uni-
tarity sum rule, ”

—iM -MM)L|S)=3(F|TIL)(F|TI|S), (1)

satisfied by the amplitudes for the decay of K
and K into final states £. Its practical signifi-
cance is that it determines the phase of the right-
hand side () in terms of (L|S), and {L|S) in
turn is, e.g., real if CPT is conserved, ' and
imaginary if only T is conserved.? The sum

rule is particularly noteworthy because it in-
volves only the amplitudes for decay into the
channel states F, and not the production ampli-
tudes from the channels (27, 37, etc.), which
are different if T is not conserved (and unobserv-
able because they describe production via the
weak interaction).

Although the Bell-Steinberger derivation in-
volved only a consideration of the time depen-
dence of the decay process, McGlinn and Polis?
have recently suggested that by regarding K,
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and K5 as conventional but overlapping reso-
nances in the channels open at that energy, it
should be possible to obtain an equivalent sum
rule in terms of K-matrix partial-width ampli-
tudes. They did so, but the sum rule they found
in this way appeared to be different from the
Bell-Steinberger result. The apparent difference
seems to us to arise from a failure to distinguish
between K-matrix and S-matrix decay ampli-
tudes. To explain this, we have obtained yet a
third sum rule, this one expressed in terms of
S-matrix partial widths. We find that the phase
information it contains is equivalent both to that
of the Bell-Steinberger sum rule and to that of
the McGlinn-Polis expression, so that in this
sense all three results are equivalent.

Consider two overlapping resonances with the
same quantum numbers. If in their neighborhood
the energy dependence of the background can be
neglected, the partial-wave S matrix for N open
channels can be approximated by the two-pole



