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A method for applying many-body perturbation theory to molecules is discussed. The
energy of H2 is calculated to be -1.176 a.u. Results are also given for the static dipole
polariz ability.

Methods for applying the many-body perturba-
tion theory of Brueckner' and Goldstone' to atoms
have been discussed previously. ' For atoms one
calculates a complete set of single-particle
states in a spherically symmetric potential. The
many-body thepry ' is applicable alsp tp mple-
cules, but one might expect greater difficulty in
generating an appropriate complete set of single-
particle states because of the lack of spherical
symmetry. The most successful methods for ob-
taining molecular orbitals have been reviewed,
for example, by Slater. '

In this paper we start by calculating single-
particle states for H, about the center of the
molecule. This gives only a rough approxima-
tion to the correct molecular orbitals, and we
use perturbation theory to correct our initial
crude approximation. Since we use a spherically
symmetric potential, we readily obtain a com-
plete set of single-particle states as in the atom-
ic case. '

For H„ the interaction of an electron with the
nuclei is given by

2f (1«pe�(cos8),

where r& is the lesser of r, the electron distance
from the origin, and R =0.70, which is one-half
the nuclear separation. '

In this calculation, the single-particle states
are calculated by the Schrodinger equation with

(2)

where y»' is an approximation (spherically av-
eraged) to the lowest molecular orbital. In this
work a first y»' was first calculated with V
= -2jr&. Then «p» was calculated from V of
Eq. (2) with y»' used in Eq. (2). Since y» is
less tightly bound than a self-consistent solution
of the Schrodinger equation using V(r), this ef-
fects a partial compensation for neglect of k & 2

terms of Eq. (1) in V(r). All the approximations
made at this stage are corrected by calculating
the higher order terms in the perturbation ex-
pansion.

It was found that the single-particle energy Eyz

is -0.5'l8 48 a.u. ; so E"' equals -1.15696+(1.4)
a.u. The first-order energy correction E " is
given by (1s1s(v ~Is 1s)-2(1s 1s II(v(1s 1s II) and
equals -0.593 28. Then E' '+E"' equals -1.03595
a.u. as compared with the very accurate value
-1.1744746 a.u. of Kokos and Wolniewicz. '

We have used perturbation theory to calculate
the second-order energy corrections. The sec-
ond order diagrams are shown in Fig. 1, and
these terms were evaluated as in previous atomic
calculations. ' The infinite number of bound excit-
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Is Table I. Energy contributions in a. u.
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FIG. 1. Second-order energy diagrams. The crossed
interaction equals the interaction of Eq. (j.) minus V of
Eq. (2).

ed states were included by the n ' rule, and
sums over continuum states were evaluated by
numerical integration. ' The second-order re-
sults are listed in Table I. The contribution from
the correlation diagram of Fig. 1(d) is -0.04726
a.u. , and our result for the total energy through
second order is -1.16572 a.u. Figure l(d) with
l ~ 2 accounts for the corrections due to lack of
spherical symmetry.

The third-order diagrams which are expected
to contribute most are shown in Fig. 2. Diagram
2(c) also occurs inverted. Values for these dia. —

grams are given in Table I. When these third-
order contributions are added to the second-or-
der result, we obtain -1.17616 a.u. as compared
with the accurate value' of -1.1744746 a.u.

In analogy to the atomic case, ' we expect the
third-order and higher order correlation energy
diagrams to be small (approximately 0.002 a.u. )
since our excited states in this case are calculat-
ed in the field of N-1 other electrons, where N
= 2 for H,. We also note that small contributions
will come from higher l values which were not in-
cluded in our second- and third-order results.
The methods of this paper should be very useful
in calculating the energy of larger molecules,
just as they have been successfully applied to
many-electron atoms. ' For many molecules the
initial approximation of a spherically symmetric
potential is better than it is for H, .

We have also used our single-particle states to
calculate the static dipole polarizability of H,.
The polarizability

(3)

where E'" is the second-order shift in energy
due to the perturbation z. Similarly, o.~ is given
by Eq. (3) with E'" now the second-order energy

Second-Order (Fig. 1).a

(a) k(R = 2)

(a) k(|. = 4)

(a) k(k = 6)

(b) + (c)

(d) )8, = 0

(d)

(d) a

(d) a

Subtotal

Third-Order (Fig. 2).
(a) k(k = 2), k' (R = 2)

(a) k(R = 2), k' (g, = 4)

(a) k(R = 4), k' (R = 2)

(a) k(R = 4), k' (k = 4)

(b) + (c) k(R = 2), k' (R = 2)

Subtotal

—.07495

—.00597

—.00131

—.00028

—.00918

—.03258

—.00431

—.00119

—.12977

—.00908

—.00197

—.00197

—.00030

+.00288

—.01044

'I values refer to the excited states.
Inverted diagram of Fig. 2(c) included.

due to two interactions with x. The energy E"'
includes all terms with two interactions with z
(or with x for a~) and any number of interactions
with

i gi/ lt ———)I( +.g.
isv

k'

(a) (b) (c)
FIG. 2. Third-order energy diagrams involving two

or three crossed interactions. The crossed interaction
is given by Eq. (1) minus V(r) of Kq. (2). Diagram 2(c)
also occurs inverted.

where N=2 for H,.
In lowest order, aII and n equal 1.035 A'. In

the next order we include one interaction with the
terms of Eq. (4), and o.

II
and o, are now 1.095

and 0.628 A', respectively. A rough calcula-
tion of higher order terms gives the result
0.972 A' for n

~~
and 0.689 A' for o.j, which is in
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reasonable agreement with the accurate calcula-
tion of KoIos and Wolniewicz. ' Our results for
o.

~~

and n are probably accurate to 5%.
Upon completion of this work, I became aware

that expansions about a single molecular center
have been used previously in variational calcula-
tions. Extensive reviews have been given by
Bishop' and by Hayes and Parr. '
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A modified fast-passage transition scheme, using two frequencies, is described and
discussed.

The Abragam-Winter adiabatic fast-passage technique for causing transitions between atomic hyper-
fine states has been widely employed in preparing atom beams for use in polarized ion sources and hy-
drogen masers. This paper reports a variation on this technique, using Happer's' two-frequency tran-
sition scheme, which proves useful for deuterium beams. It permits two possible populations of the
deuterium hyperfine states with much the same weak-field transition system as is appropriate for hy-
drogen.

The atomic beam considered in both these and the adiabatic fast-passage experiments is a hydrogen
or deuterium beam which has been initially state selected by passage through an inhomogenous focus-
ing magnetic field. The bea.m consists of atoms in the set of hyperfine levels for which dE/dH is posi-
tive at high magnetic field H. (See Fig. 1.) In the fast-passage method these atoms are passed through
a weak gradient magnetic field which provides a region of "static, " but slowly increasing, magnetic
field in which there is also an rf field. The rf frequency is chosen to be the atomic transition frequen-
cy at some median value of the "static" magnetic field. With sufficient rf field strength present, the
atom will maintain a precession about the rf field (in a reference frame rotating at the rf frequency)
while the "static" field slowly sweeps through resonance, and hyperfine transitions will result.

Following Happer, ' we can write the Hamiltonian for the atom in the combined "static" and fast-pas-
sage rf fields as

"dC =&q+g~ p,,J,H, +gIp,,H, i(J schmo, t+ J+ sin~, t).

BC& is the free-atom term, and the next two terms represent the interaction of the electron magnetic
moment with the external magnetic fields H, and H, q (nuclear terms are neglected). If Eq. (1) is trans-
formed to a coordinate system rotating about the z direction with frequency coo, the form is changed to

R' =Xz+gztJ. ,J,H, -~g, +gJp,H„[J cos(&u, -~,)t+ J& sin(&u, —&u,)tj. (2)

E~ here is the total atomic spin projection (including nuclear spin), while J», J&, and J as in Eq. (1)
are electron spin projections. It is clear that if ~, =~0, this Hamiltonian admits of stationary solu-
tions, since K in that case is time independent. The energies of these eigenstates will in general de-
pend on u, and H,i. When H, q is zero, . the energies W; resulting from Eq. (2) are readily calculated;
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