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The commutation rules of the algebra of fields have been applied to predict sum rules
for the electric-dipole moment and the magnetic-quadrupole moment of nucleons. In the
calculation it was assumed further that the sum rule could be saturated by just one state
[N**(1518)]. The resulting consistency condition obtained is in striking conflict with ex-
perimental results. The identical condition is obtained if one assumes saturation of the
sum rule by an arbitrary number of one-particle states. This failure of the consistency
condition based on the algebra of fields is to be contrasted with the reasonable success
of the corresponding relation based on current algebra and saturation by the same single
state.

Lee, steinberg, and Zumino' proposed a set of
commutation rules for the vector and axial-vec-
tor current components. The resulting algebraic
structure, "the algebra of fields, " is similar to
but not identical with the "current algebra" pro-
posed by Dashen and Gell-Mann. ' The algebra of
fields has a somewhat simpler mathematical
structure than does the current algebra (there
are no q-number Schwinger terms), and it has
also produced some striking experimental pre-
dictions. A very interesting attempt by Suga-
wara~ to construct a dynamical theory using cur-
rents as the primary entities is based on the
same algebra of fields. The purpose of this pa-
per is to show that there are experimental dif-
ficulties, perhaps serious ones, which follow
from the commutation relations of the algebra of
fields. It is possible, using the commutation re-
lations of current algebra, to obtain a relation
between the magnetic moment and the charge ra-

dius of the nucleon (B. W. Lee'). Another con-
sistency relation, again based on current algebra
for the electric-dipole and magnetic-quadrupole
moment, was derived by Bietti. ' Both these der-
ivations assume in addition to the algebraic struc-
ture the saturation of the sum over intermediate
states by one (or two) single-particle states.
The results obtained agree with experiment. In
this note a similar consistency relation is de-
rived based on the algebra of fields, assuming,
in addition, saturation by an arbitrary number of
single-particle states. The resulting relation ap-
pears to be in flagrant conflict with the experi-
mental results.

The algebra of fields is described by

[V, (x), V, '(X)]. ~
= iy„„V,~(x)5'(x-y), (1.1)

[V, (x), A, s(p)]
&

= if„s A,&(x)5'(x-y), (1.2)

[Ao (x), Aos(y)] &
=if &&Vo&(x)b'(x-y), (1.3)

[V,"(x), V, s(y)] = [A, (x), A, s(y)] = if

slav

&63(x-y) + z$8 53(x-y),

[V, (x),A, (y)]=[A, (x), V, (y)]=if s A„l'(x)5'(x-y),

[V. (.), V, '(y)]=[V. ( ),A, '(y)]=[A. ( ),A, '())1=0. (1.6)

Here S is a c number, f sz are the structure
constants of SU(3), a and b (or i and j) run over
1, 2, 3. V„(x) and A „"(x)are the octets of vec-
tor- and axial-vector currents. (o., P =1, ~ ~ ~ 8,
p =0, 1, 2, 3). These currents are the dynamical
variables in Sugawara's theory; the construction
of a dynamical theory would consist of finding ap-
propriate relations or equations for these enti-
ties. In this paper just the consequences of the
Eqs. (1.1)-(1.6) will be studied. It should be noted
that the crucial difference between the algebra of
currents and the algebra of fields (apart from the
Schwinger terms) lies in the commutation rule
(1.6). In the algebra of currents the space com-

ponents do not commute; instead,

[V "(x), V~ s(y)] =ib ~f„s&vo&5(x-y).

(2.2)

Using the commutation rules (1.1)-(1.6), it is
straightforward to obtain

[Z,-,EJ '] = xp„„fd'x r,r,V, &, (2.3)

To obtain the sum rules we introduce the electric-
dipole operator R" and the magnetic-quadrupole
operator Mzj. ~.

R = fd'xrV, "(x), (2.1)

M;J = fd~xrg[r&V ]J.
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[M-, ", M...']=0,

[E;,M, i, a] =if„&
fdsx re[ r x V ~]I,.

(2.4)

(2.5)

[E ' E '] = i fa'V 'ds~

[M„',E,'] = g fa'(r XP),d'~.

(2.3 ')

(2.4 )

(2.5 )

It is important to note that (2.3') and (2.5') are

Specializing to the case n = 1, P = 2, and i =j =k
= l = m = 3 one obtains

exactly the same as the corresponding expres-
sions derived using current algebra. However,
(2.4') is characteristically different; its counter-
part in the algebra of currents is

[M ' M ']=i fz'(x'+y')V 'd'x. (2.4")
Now take the expectation value of (2.3')-(2.5') be-
tween proton states at rest and insert a complete
set of states. The right-hand sides of the expres-
sions obtained can be interpreted in terms of
derivatives of the isovector electric and magnetic
form factors of the nucleon' (see also Hand') as

Z.(&plE, 'I~&& IE,'lp&-&plE. 'I~&@IE.'Ip&)=if''(plv. '(~)lp&d'~=-2
~ E2=p

0 =Z.((plM..'l~&( IM.,'Ip&-&plM, "l~&(slM„'lp&),

(2.6)

(2.7)

Z.(&pIM„'l~&&IE.'lp&-&pIE, 'I~&@IM,.'lp&) = ifd'~ &ply'(«, '-yv, ') Ip& =
2'M

—E2= p
(2.8}

(x~'& is the charge radius of the isovector form factor. Note that the current algebra merely re-
pla.ces (2.7) by

p.$ )=if''(Y'+y')&plv, 'Ip&d'x=2
d' GE '(K')

(2.7')

Here Gz and G~ are the (Sachs) form factors defined by

Gz;u (K ) =GxM (K ) Gzw (K )—, (2.9)

G~ and GM are (both for protons and neutrons) defined as

G~(K') =F,(SC') , ' -G., (K') = F,(K2)+F,(K'). (2. 10)

I', and E, are the "usual" form factors, M the nuclear mass, and p. the nuclear magneton. Now assume
that the sums in (2.6)-(2.8) could be saturated by one term; since the N**(1518)has the correct quan-
turn numbers, it is a reasonable choice. Then, using the Wigner-Eckart theorem, the matrix ele-
ments can all be expressed in terms of (N**l E» Ip& and(N**I M» Ip&. One obtains

I
&N**

I E,.'I p& I' = l[dG~'(K')/d-K'j~2=. ,

1&N**IM„'Ip& I'= o,

(N**lE,'I p&(p I
M„'I N**&= (//2M)[dG~ (K')/dK']~, .

For comparison, (2.7') yields

I
&N**

I
M„'Ip& I' = 2[d'G~'(K')/d(K')']~2=, .

(2. 11)

(2.12)

(2.13)

(2.12')

Again (2.12) is the characteristic expression for
the algebra of fields. Equations (2. 11), (2.12),
and (2.13) yield directly

I (theoretically), while experimentally

or

dGM~Z'
(2.14)

= -0.30 ~ 0.002,c
dGM~(K')

E=p

(
dGM =+0.20 + 0.008.
dR g

(2.16)

dG E' dG
(2.15) This is a clear conflict. It is to be contrasted to

the consistency condition in current algebra ob-
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tained from (2.11), (2.12'), and (2. 13):

d 3G~'(Z3)
6 ( d(tc')*

da 'Z'
(2. iv)

Q.c.I(p IM..'In) I'= 0, (2. iS)

where the c are positive constants. Hence all
the matrix elements (P I

M»'I n) vanish, and this
in turn gives, via (2.S), the previous result
(2.14).

which gives experimentally 2.7X 10 '=2.8&& 10
a much better result. If one retains a sum over
all one-particle states one can again use the Wig-
ner-Eckart theorem in (2.7) to express all ma-
trix elements in terms of (p I M»'In), with the re-
sult

It thus appears that if one can attribute any
physical significance to the approximate satura-
tion of commutators by single-particle states,
the algebra of fields leads to serious discrepan-
cies with experiment, while the current-algebra
results seem to be reasonably good.
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On the basis of chiral dual dynamics it is shown that the square of the mass of any non-
exotic strange or nonstrange meson or baryon of nonvanishing isospin (with the possible
exception of I= 1 baryons) must be an integer multiple of the "quantum" ~2& It is found

than the strength of SU(3) breaking can only take certain discrete values.

np(t) =-,'+t/2mp3, (2)

n a positive odd integer; and P(t) a polynomial in
t, so normalized that

r(1-,(0))
r(1 ({)))

( ) 3t (3)

I, being the third component of the isospin of the
hadron. The various off-the-mass-shell extrap-

By use of field-current identities, current alge-
bra, and off-shell extensions of the Veneziano
model, it has been recently possible to obtain
closed expressions for electromagnetic form fac-
tors. ' While extrapolation off the mass shell is
by no means unambiguous, all these expressions
are of the form

G(t) = ( ' ( )) I (t).r(-,'n-o. ,(t))

Here G(t) is the isovector electromagnetic form
factor (we are for the time being limiting our dis-
cussion to Ig0 hadrons); n~(t) the Regge trajec-
tory of the p meson,

olation procedures used by different authors af-
fect only the detailed form of I'(t). The crucial
feature of Eq. (1) is the fact that n is odd. This
is a direct consequence of the origin of Eq. (1)
in the soft-pion limit of the amplitude for mH

-a('&H [a '} is the b1F=O, M=1 axial-vector
current; H is the hadron the form factor of which
is given by (1)]. In this limit only states of nor-
mality opposite to that of H contribute; and be-
cause of the quantization condition of Regge tra-
jectories, ' this leads to n being odd. We shall
show that this simple result leads to extremely
strong constraints on the hadron spectrum. In
particular it relates the masses of baryons to
those of mesons and quantizes the scale of SU(3)
breaking. Our result is that (A) the square of the
mass of any (nonexotic) hadron (be it a meson or
a baryon) of nonvanishing isospin (with the pos-
sible exception of I= 1 baryons) must be an in-
teger multiple of —,

' m, '. By nonexotic we mean
any meson obtainable as qq and baryon obtain-
able as qqq, in other words all (I BI 1) hadrons
known at present with the possible exception of
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