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GeVs). This ratio is consistent with the decrease
expected for baryon exchange.

Barger and Cline' have made predictions for P
+p —n' + n' based on fits of a Regge-pole model
with nucleon and ~z exchange to the recent data
on m'-P backward elastic scattering of Orear et
al." For P+P-w +n' they find two solutions de-
pending on the relative sign of the two exchange
amplitudes. Predictions of the model are given
in Table I and Fig. 2. While the overall average
of the data lies higher then either prediction by
two standard deviations, the agreement is better
with solution 2 in the small-~ t~ region. There is
good agreement with their prediction for P+P

r +7r
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In this paper we use the convention that the small
momentum transfer is from the beam particle to the
first-mentioned product.
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The predictions of an algebraic model are compared with the experimental meson mass spectrum.

One of the most interesting results in meson
spectroscopy is the fine structure in the mass
spectrum. ' ' It appears that the spectrum for
the charged (probably I= 1 and Y=0) mesons be-
low 2400 MeV falls into four bands, the p band,
the A, band, the R band, and the STU band, and
that the fine-structure splitting inside each band
increases from the lower to the higher band. '

The mass splitting between the different bands
—or, more precisely, between the highest mem-

bers of each band —has been described recently
by an algebraic structure A„' which is essential-
ly the Majorana representation of a relativistic
symmetry 8=(P & SO(3, 2)"broken by a non-Lie
algebraic relation (generalized infinite-compo-
nent wave equation). The ma.ss spectrum which
was derived in Ref. 9 is the rotator spectrum

M' = A'o. '—(9/4)A. '+ A.'s (s + 1),

where the symmetry-breaking constant & has the
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va]ue g'= 0.29 BeV' and n' is a parameter that
describes the representation of A„ i.e. , charac-
terizes the physical system of which p, A, , R4,
and U are different states.

The problem we want to consider here is wheth-
er the splitting inside each band can be described
in an analogous manner, i.e., whether there is
an algebraic structure that describes the whole
spectrum including the fine structure. To do this
we certainly need a new quantum number that
distinguishes the various levels in the same band.
There are two ways to accomodate such a new

quantum number: (1) to choose a larger algebra"
and (2) to choose a more complicated representa-
tion. We shall try here the second way for which
there is already an analogy in atomic physics:
The states of the nonrelativistic hydrogen atom
are described by the degenerate series represen-
tation of SO(4, 1), and to obtain also the fine
structure one has to use a more complicated rep-
resentation of the same SO(4, 1).'

As the space-time part remains the same we
will have to look for a more general representa-
tion of the spectrum-generating group SO(3, 2) of

Two kinds of representations of the relativistic
symmetry 6 =+&, z I- SO(3, 2)r ~ are well
known, one of which is the finite-dimensional Di-
rac representation (in which I'„ is represented by
2z" and S„„by 2a'„, ) and the other the four Majo-
rana representations, '3 the most degenerate uni-
tary representations. It is useful to characterize
the representations of Q by the multiplicity pat-
tern of Ehrman'4 that describes which eigenvalue
of the spin operator

-r„r~ --,'S„.S~" =R,

Q, = -&u, d' = &R(R-2)

(4)

where R is a real constant with R & 2; and whose
multiplicity pattern is given in Fig. 2. From the
rnultiplieity pattern we see that this representa-
tion space of @contains all integer spins s = 0, 1,
2, , and the new quantum number n has for a
given s the spectrum n = s, s-1, ~,-s.

Before we can assign the meson resonances to
each box of the multiplicity pattern we have to
make some assumptions about the symmetry

e 1/g 1/2 e 1/2 1/

not an independent quantum number but n =s+ 2.
In the Dirac representation the sign of n distin-
guishes between particle and antiparticle.

After this introduction we can now present the
model that describes the fine structure. We
shall only state the results here and compare
them with experimental data. The derivation of
the representation in analogy to Refs. 9 and 13
for the Majorana representation and a theoretical
discussion of the symmetry-breaking relation
(mass formula) has to be deferred to a more de-
tailed mathematical paper.

We call' ~ the representation of P which is
characterized by the following eigenvalues of the
Casimir operators:

I 'vp„w"=s(s+1)

(~~=-'~~ "~'S I. M2=I I ~)2 v pa& p

and which of the operator

(2)

y(n)1/2, 0

0 3/2, 1

I 'I'„1"=n (3)
appear in an irreducible representation. E.g. ,
the multiplicity pattern for the Dirac representa-
tion S~ "~ is given in Fig. 1(a), and those for
the Majorana representations P~ '"""' are given
in Figs. 1(b) and 1(c). Here the first number in
each box gives the value for n and the second
number gives the value for s; the line between
the boxes indicates that there are nonzero ma-
trix elements of elements of the Lie algebra (I';)
between these states. The letter in the boxes
gives the particle symbol which has been assigned
to these states (cf. Ref. 9 for the Majorana rep-
resentation). In the Majorana representation n is

2 3/2
A2 &/2, 2

(b)
3 5/2 R &/2, 3

(c)

»/2, 4

FIG. 1. Multiplicity pattern for the following repre-
sentations of Q or SO(3, 2)~ & . (a) Dirac represen-

pp ptation. (b) Majorana representation with half-integer
spin (ko= 2, c = 0). (c) Majorana representation with
integer spin (ko= 0, & = 2). The letters in (a) aod (c)
give a possible particle assignment.
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FIG. 2. Multiplicity pattern of the integer-spin sin-
gleton representation g( of g or SO(3 2~su~ru

breaking. The mass formula (1) can be obtained
by taking the expectation value of the following
operator equation between the particle states:

FIG. 3. Multiplicity pattern of Q with the possi-
ble particle assignment and predicted masses. The
number in the right upper corner of each box is the
mass squared in BeV2 and the number in the right low-
er corner is m in MeV.

mined from the spectrum of their masses to be

P„PI' =m, '+(P,P") '~„W"3',
A.,'= 0.30+ 0.01 BeV'. (9)

where m0' is constant in an irreducible represen-
tation. If we replace ~' by an operator which has

a constant value in the Majorana representation
and has a nontrivial spectrum in g, then we

obtain for P„P" a relation which reproduces for
the Majorana representation the old result (1) but

which gives a mass splitting between states with

different value of n but the same s. Such an oper-
ator is ~'- ~ ' 3.,'(P-„P") '(~ ~"-P„f "P 1')
(where Ai' and A.,' are two constants of dimension
BeV') because in g( '"""') (P„P") '(%&%~

-P„r~P, r~) = --,'."
So we postulate as the symmetry-breaking rela-

tion for the mass operator

p p"=m'+M 2m~u
u 0 u

u prup r~-
g (7)

M

The expectation value of this operator equation in

the canonical states ~P;, n, s, s,) of the irreducible
representation space of 8 will then lead to the

mass formula

m' = m, '+ Xi's (s + 1)

-X,'s (s + 1)(s (s + 1)-n') (8a)

or

m'=m, '+ (X,'-X,'s)s(s+ 1)

—A.,'s (s + l)(s'-n'). (8b)

Equation (8b) gives for the states with s'=n'
the old rotator spectrum, if X,'«X,' as should be
the case for a fine-structure constant. So we

shall assign to the boxes with n =s the particle
states v, p, A, , R4, and U, and &,

' is deter-

o corresponds to the one-particle state with the
hadron quantum numbers of the vacuum intro-
duced by Bohm and Sudarshan, "m, ' is taken to
be 0, and s =O'. We remark that the mass dif-
ference between the o state and the m state is of
the order of the fine structure (cf. remark below).

The mass fine-structure constant ~, is then de-
termined from the mass splitting inside the vari-
ous bands; a value which gives a good fit to the
experimental data is

A.,'= 0.0061+ 0.0002 BeV'. (10)

The masses that we predict with the values (9)
and (10) of A, and A2' from the mass formula. (8)
are given in the boxes of the multiplicity pattern
in Fig. 3. In each box of the multiplicity pattern
of Fig. 3 we have given m in BeV in the right
upper corner, m in 1VIeV in the lower corner, and

the particle symbol for the possible particle as-
signment. Comparing these predicted masses
with the experimental data we see that the agree-
ment is remarkable. The only apparent discrep-
ancy is in the mass value for R„which we have
here identified with the g Ineson of s =3, and
whose predicted mass is 20 MeV below the value
one mould expect from the experimental data. ' '"

The mass of the state with the quantum num-

bers (n, s) = (0, 0) has been assumed to be zero,
i.e. , mo = 0 in (8). An equally good fit of the
mass spectrum is obtained if we choose m0'
=rn, ', so that from this point of view we could
equally well have assigned the v meson to the (n
= 0, s = 0) state. However, this would lead to dif-
ficulties connected with the parity. The parity
operator for the singleton representations of
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SO(3, 2) is given by"

=e"~o; g=+1 or -1.
The resulting parities for our representation

with q =+1 are indicated by a plus or minus sign
in the boxes of the multiplicity pattern in Fig. 2.
For q = -1 we would just have to reverse all the
signs in Fig. 2 and could then have assigned n to
the (n =0, s =0) state. However, the parity value
of A, decided for the choice of g=+1. With this
choice for g, the g meson with s = 3 had to be
assigned to the (n = l, s =3) state.

To summarize the predictions of our model:
(1) &, T, and U have spin 4 and alternating par-

ity, and there is an additional s = 4' resonance
at approximately 2050 MeV.

(2) The S bump is split. Latest experimental
data seem to confirm this.

(3) The R mesons have s = 3. If B2 is not identi-
cal with the g meson, then the R, bump is split
and g is the upper part of the R, bump. [For the
latter possibility cf. Figs. 2(D) and 3(B) of Ref.
1 and Fig. 1, and also Fig. 2 of Ref. 3.]

(4) A, is split into a 2' and 2 state [cf. Fig.
5(B) Ref. 1 with Fig. 3(A) of Ref. 2]. The present
best experimental resolution in the A, region is
10 MeV, which is just not enough to resolve the
predicted splitting of the A, .

(5) The p bump contains two p states with oppo-
site parity. The experimental situation for the
A, and R bands suggests that all states in the
same band have equal G parity. Then G =+1 for
p'(1') and p' can at best decay into 4w. There is
no experimental evidence against the existence
of a narrow 4m resonance in the p region.

There remain some serious theoretical prob-
lems connected with our model besides the one
associated with the interpretation of the 0 state.
One of the problems is the interpretation of the
states with sign n = -1. For baryons these states
would naturally be interpreted as the antiparticle
states in analogy to their interpretation in the Di-
rac representation. " But what about the meson
resonances; are these antimesons'~

In the above-presented way the fine structure
in the meson spectrum could be described at the
cost of the introduction of a second constant be-
sides the mass-splitting constant A.. It would be,
of course, much more appealing if there were
only one universal constant of the dimension of
MeV. [We note that the same constant & also de-
scribes the SU(3) mass splitting for mesons; cf.
Ref. 15 with references thereof. ] However, it is
apparent that mass differences of the order of

the A, splitting or, also, of the m-meson mass
cannot simply be described by a constant which
is one order of magnitude larger than these quan-
tities, as is the case for A.,'=0.285 BeV'.

The difference from zero of m, ' is certainly
also a fine-structure effect. In fact, if we as-
sume that the fine-structure effect for the intrin-
sic quantum numbers is proportional to the sec-
ond-order Casimir operator 8 of SU(3), then the
mass difference between the o state of Ref. 15
and the s state is given by A.,'[p (m)-8(o)] = A.,'(v„'
+ 2v, ) = 0.0061x 3 BeV'-m„'.

But perhaps this and even all the number com-
binations above are just accidental.

It was the enthusiastic encouragement of B. C.
Maglic that initiated this investigation. He also
contributed valuable information about the exper-
imental situation.
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W. H. Marlow, private communication. It appears
that this is the most general form for m. In the Dirac
representation, I'0 ~2&, (ll) reproduces the well-
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0'

~ We remark that there is a representation of Q very
similar to the present representation (with the same
eigenvalues of the Casimir operators) but containing

only half-integer spins. This representation offers it-
self for the description of baryons, in particular since
the lowest Poincarb group representations that it con-
tains are the same as are contained in Q& "~ . This
would then be able to describe fine structure in the
baryon spectrum as, e.g. , given by the 2+ N(1688) and
2 N(1680) .
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Based on the current-current theory of weak interactions the 4I=~ rule for nonleptonic
decays is derived from a dynamical mechanism that satisfies duality and absence of res-
onances in exotic channels.

It has been argued, ' based on universal current-
current theory of weak interactions, that the 4I
= 2 rule in nonleptonic decays may be accounted
for either by adding an extra current-current
term so as to cancel the 27 portion of the interac-
tions or by a dynamical mechanism that selective-
ly enhances the octet component. The usual
mechanism for the octet enhancement, often re-
ferred to in terms of "tadpoles, "' has been dis-
cussed in a variety of ways. ' None of them, how-
ever, appears convincing enough.

In this note we wish to point out that the 4I = ~
3rule or more precisely, the absence of AI=2

transitions may be understood as a dynamical
mechanism that satisfies duality and the hypothe-
sis of no exotic resonances. '

The nonleptonic decays are described as a qua-
sihadronic scattering process in which the weak
interaction acts like a scalar and a pseudoscalar
spurion carrying zero energy and momentum. We
assume, as in the case of ordinary hadron scat-
tering, that they are governed by a dynamics that
satisfies duality and the hypothesis of absence of
exotic resonances. '

Let us first consider octet baryon decays in the
SU(3)-symmetric limit. It is then easy to show,
under the foregoing assumptions, that

S(27) +B(8)-M(8) +&(8)

is forbidden. Here S(27) stands for scalar or
pseudoscalar 27-piet spurion with I= 2 and

~
Y~ =1.

The argument that leads to the above conclusion
is quite simple: There are six independent am-
plitudes, corresponding to the SU(3) representa-
tions of 8, 8', 10, 10*, 27, and 27' for each pari-
ty-nonconserving (pv) and parity-conserving (pc)
decay. The same representations arise in all s,

t, and u channels. Absence of exotic resonances
implies that there be no 10*, 27, and 27' in both
s and u channels and no 10, 10*, 27, and 27' in
the t channel. For each pv and pc amplitude,
s(u)- and t-channel duality then requires seven
linearly independent SU(3) amplitudes to vanish
and therefore requires that they all vanish. Simi-
larly, s- and u-channel duality gives six indepen-
dent conditions on six amplitudes, which again re-
quires that all amplitudes must vanish. Thus &I
= & transitions for baryon decays are forbidden. '

It is straightforward to apply the present argu-
ments to K- 2n (3n)' and 0 —:"mdecays. One
then obtains the result that M= ~ transitions for
the above processes are again forbidden and
therefore these decays should obey the &I= 2 rule.

We have so far assumed, besides our basic as-
sumptions of duality and absence of exotic reso-
nances, the exact SU(3) symmetry. Let us next
consider the case of broken SU(3).' In that case,
it is not difficult to show that similar arguments
can still be applied to -"m, Z -nn', and K
-2n (3m) decays. As a result, the LI=-2 rule is
still valid for these decays. An interesting fact
is that absence of a M =2 transition for Z —nn

implies the well-known triangle relation v 2Z, '
+Z, '=Z and thus effectively the ~I = 2 rule
for Z decays. '

At this point, let us recall" that for pv decays,
soft-pion calculations based on SU(2) IR SU(2) de-
mand the ~I = 2 rule for A and " decays but not
for Z decays. It is then an interesting observa-
tion that if we combine our results with current-
algebra predictions, we are led to the conclusion
that all pv decay amplitudes, including and K
decays, satisfy the b,I= & rule in broken SU(3),
with the additional restrictions S(Z, ') =0 and
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