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(like v') are estimated to be completely negligible at
the statistical level of this experiment.

~40ne can also calculate the detection effeciency for
~+vv events from knowing that 217 K~2 events with no

gammas pointing were detected. Assuming a reason-
able gamma-ray detection efficiency one gets very
good agreement with the conclusion that we would de-
tect 10.6% of a real sample of ~+vv events.
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A systematic approach to the construction of new types of correlated many-particle
trial functions is outlined. It is based on the formalism of a special type of multidimen-
sional integral transformation, and combines a conceptually simple geometrical inter-
pretation with computational practicability and the possibility of classifying the correlat-
ed wave functions in a simple manner. The approach is applicable to the formation of
new, multicenter molecular orbitals as well.

Recently I proposed the use of integral-trans-
form trial functions in quantum mechanical cal-
culations. ' Such functions are extremely effi-
cient2 ' and give rise to orbitals of near Hartree-
Fock accuracy with only a few adjustable param-
eters. In this work we generalize and extend the
idea in a systematic manner to correlated many-
particle trial functions. The formalism is equal-
ly applicable for the construction of new kinds of
molecular orbitals.

Let Bbe the Hamiltonian of the system whose
solution cp(x) we seek. Assume that the exact
solution y, (x) of some related model Hamilton-
ian H, is known. Then one constructs the inte-
gral-transform trial function |p,(x), an approxi-
mate solution to y(x), by formally scaling y„
y, (x)- y, (tx), and forming

y, (x) = f S(t)y, (tx)dt,

where D is some suitable domain of integration
and S(t), ca.lied the shape function, is a. weight
factor to be determined. The computationally
most practical approach is to parametrize some
trial form of S(t) and optimize the parameters
variationally. The following simple argument2
aids in the selection of an appropriate analytical
form for S(t): As the "perturbation" (H-H, ) ap-
proaches zero, both y, (t ), x, and y, (x) tend to
cp(x). This is consistent only if in that limit S(t)
=6(t-1). Consequently one chooses a trial S(t)
which for certain limiting values of its parame-
ters becomes the delta function, i.e., S(t) should
be a delta-convergent sequence. '

Since cpa(xt) is a function of the product xt, Mel-

lin transform functions are the natural choice, as
in the case of the iterated integral-transform-
function approach' where the 0th iteration yl, (x)
is obtained by the prescription

lf P

p (x) =f ''' f%o( II t;) II S;(t;)dt;.
Jt- foM

One straightforward generalization' to many-
particle systems is to take some relatively sim-
ple N-particle, M-parameter trial function of the
independent-particle type and integrate it with
respect to the parameters, choosing a suitable
S(t„t„~ ~ ~, t~). This involves an M-dimensional
integration. Particle correlation is to be intro-
duced by coupling the t, in S(t). One special ver-
sion is to use the N scaling parameters as the
integration variables I& and again select some ap-
propriate S. The main objection to the above
procedure is that at present there is no previous
experience to rely upon in selecting the best way

to couple the t& in 8 and thus introduce particle
correlation. Furthermore, an M-fold integration
may be completely intractable from the practical
point of view. To overcome these difficulties we
shall outline a compact, unified, and quite gener-
al method for constructing many-particle corre-
lated trial functions. Recent interest in two-elec-
tron trial functions as building blocks for many-
electron atomic and molecular wave functions
provides a special impetus and makes the method
especially topical.

The concept of electron correlation in atoms
and molecules is often couched in a spatial geo-
metrical language. Although vague and qualita-
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tive, these geometrical concepts have been use-
ful. We shall follow this tradition, but our con-
ceptualization will be in a precise geometrical
language. Paradoxically, the mathematical form-
ulation needed to achieve a measure of geometri-
cal visualization is fairly sophisticated. Howev-

er, we hasten to point out that no intricate mathe-
matical manipulation will ever be necessary.

We shall consider some aspects of the theory
of generalized functions concentrated on mani-
folds of dimension less than N, imbedded in an
N-dimensional space. We adhere closely to the
discussion in Gel'fand and Shilov. '

The most general correlated N-particle trial
function we propose can be represented in the
following concise form:

4(x ) = fd(P» P„~ ~ ~, PJ,)S(t )p(t, x)dt

S(t )g(t, x) ~ cu. (2)

Here the vector x designates the set of N physi-
cal coordinates, while t is the collection of the
N nonphysical integration variables. The volume
element dt =dt,dt, ~ dt~. The Leray form co of
the manifold P, =P = ~ ~ ~ =PI, =0 is defined by

dP, ~ dP& v =dt.

In particular, if the Jacobian J(P, . ~ Pi/t, .
&g, )

c0, one may write

N =dpi, ' df g/el

We assume' that (1) the P,(t) are infinitely dif-
ferentiable functions and (2) the hypersurfaces
P; = Iu; (i =1, ~ ~, k) form a lattice such that in the
neighborhood of every point of the manifold there
exists a local coordinate system in which u;
=Pz(t ) for i =1, ~ ~, k, and the remaining ui„„
~ ~, uN can be chosen so that J(t/u) & 0. If k =1,
the manifold reduces to a hypersurface (N-1
dimensions) and the second condition (now on P,
only) simply means that there are no singular
points on the surface P, =0. With the S(F) in (2)
the functional 4'(x) is called a iinglet layer and

S(t), its density. Finally, the generalized func-
tion b(P„P„~~ ~, Pq) is defined by the right-hand
side of (2).

Let us now discuss the meaning and signifi-
cance of the various terms that make up our pro-
posed trial function (2). y(t, x) is our initial,
simple approximation to the exact eigenfunction
of the Hamiltonian in question. It is the analog of
po(xf) in (1). The shape function S(t) is the N-
dimensional generalization of S(t) in (1), with the

same role. It adjusts q(t, x) to resemble more
closely the exact solution. The P;(t) are the
means by which particle correlation will be intro-
duced. This is achieved by making the P; depend
on more than one nonphysical coordinate t;. Fi-
nally, the role of 5(P„P„~~ ~, P~) is to indicate
explicitly that because of the k constraints, P; =0,
i = 1, ~ ~ ~, k, the trial function 0 (x) is only an
(N-k)-fold integral transform.

For the initial approximation p(t, x) we pro-
pose the simplest independent-particle function
with no adjustable parameters and the t; as scale
factors: p(t, x) =y~(t,x„t,x„~~, t~xN). We
shall call p~ a primitive function. The reason
for this choice is to make integrations with re-
spect to the physical coordinates x; tractable.

For the shape function S(t) we recommend a
symmetrized product of S;(t~). Then, if we
choose P;(t) = f;, the optimum product-type S(t )
would reproduce the Hartree-rock solution.

Notice that the P;(t ) were chosen to be indepen-
dent of the physical coordinates x;. Although not
essential, this is dictated by practical consider-
ations: Pz(t, x) would make integrations over the

x; intractable. We intend that the physical inte-
grations be performed first, followed by the triv-
ial manipulations demanded by the presence of
the generalized functions and, if k &N, concluded
by the 2(N-k)-fold integration over the remaining
f and f' coordinates. (The calculation of expecta-
tion values involves integration over the physical
coordinates and, if k &N, additional integrations
in the direct product space t & t' of the nonphysi-
cal coordinates. )

If N-k is small compared with N, we can dis-
pose of the objection against an integral-trans-
form trial function that may be intractable be-
cause of high-dimensional integrations. Intro-
ducing particle correlation exclusively via the
P;(t) gets rid of the other objection, namely, that

we do not know how to couple effectively the t; in

some general form of S(t). Now at least there is
a clear-cut geometrical interpretation to the

coupling scheme one decides to choose. By mak-

ing the t; scale factors to the corresponding
physical coordinates x~ (see the form of y~), we

can transfer the geometrical interpretation that
applies to the nonphysical t space directly to the

physical x space. Consequently one can classify
now correlated many-particle trial functions in
precise geometrical terms by characterizing the
correlation-generating P;(t ).

As these trial functions will be optimized with

respect to variational parameters, one has to
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find a satisfactory answer to the following ques-
tion: Should one parametrize the I';, S, or per-
haps both? Without some actual experience there
is no definite answer at present. One reasonable
exploratory program would be the following:
Choose for S a delta-convergent sequence and
parametrize it; then select a set of I'; that belong
to some well-defined class of geometrical ob-
jects; finally optimize the parameters with re-
spect to the primitive function pz. A very im-
portant example of geometrical objects is the
class of all hypersurfaces. In particular, the
integral of an N-dimensional function F(x) over
the hyperplane x, p, , + ~ ~ ~ + x~pz =P is called the
Radon transform of F(x).' Its general properties
and geometrical meaning are well established. '

Assume now that the x;, i=1, ~ ~ ~, L, refer to
the L electron-nucleus separation coordinates in
a molecule. Using Eg. (2) we can construct L
center molecular orbitals that are completely
different from the conventional linear combina-
tion of atomic orbitals ones and relate much
more closely to the geometry of the molecule.
Furthermore, the coalescence of the x; produces
a "united-atom" atomic orbital.

We have to discuss the questions of symmetry
and statistics. The least sophisticated approach
is to construct both the primitive function and the
shape function in such a way that they are neither
symmetry breaking nor statistics violating. Of
course, this also imposes certain restrictions on
the arguments of the P;. Another method would
consist of applying symmetrization (and antisym-
metrization) operators as well as the appropriate

projection operators at the end. The relative
merits of these alternatives need further investi-
astion.

It has to be emphasized that Eq. (2) is not the
most general correlated many-particle trial
function one could imagine. First, the t; need
not be the scale factors. Second, the P;(E) could
be made dependent also on the physical coordin-
ates. (This would relate our functions to the
more conventional collective- coordinate approach
in nuclear physics. ") Finally, the general delta
function we use could be replaced by an arbitrary
function of x and t. However, we feel that the
formulation we propose combines conceptual
simplicity and an appeal to geometrical intuition
with the possibility of systematic classification
of trial functions and computational practicability.
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rr scattering in the di-pion mass region 1.0-1.4 GeV is analyzed. It is shown that an

anomaly of the «+ state in the region 1.0-1.2 GeV is either an I=O D-wave amplitude
which interferes with a nearly static I=1 I'-wave amplitude or a Breit-Wigner D wave
which interferes with a moving P wave (possibly resonant). The f 0 meson seems to
show considerable inelasticity.

An enhancement in the m n' mass spectrum in
the di-pion mass region 1.0-1.2 GeV has been re-
ported by Whitehead et al. , ' Miller et al. ,

' and

others. ' It is noted in Refs. 1 and 2 that the ob-
served enhancement' has I = 0' and J probably
2' and is not associated with the S*, previously


