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the nucleus. In nuclear matter, the properties
of the Y, may be different than when the Y, is
formed in the free state through the capture of a
K on hydrogen. In addition the interaction of
the reaction products with the residual nucleus
should be taken into account. Nonetheless, our
study has shown that the T =0 resonance plays a
decisive role in the K capture and gives a quali-
tative explanation of the main results. Only
after taking the Y, resonance into account can
one hope to explore properly the surface proper-
ties of nuclei by K absorption.

A more detailed account will be published in
the near future.

We acknowledge with thanks helpful conversa-

tions with A. K. Kerman.

*Work performed under the auspices of the U. S.
Atomic Energy Commission.

(Permanent address: Aeronutronics Division, Philco-
Ford Corporation, Newport Beach, Calif.

~D. H. Wilkinson, J. Phys. Soc. Japan, Suppl. 24, 469
(1968). This paper reviews the subject of K capture
and contains many key references.

D. H. Davis, S. P. Lovell, M. Csejthey-Barth,
J. Sacton, G. Schorochoff, and M. O'Reilly, Nucl. Phys.
B] 434 (1967)

E. H. S. Burhop, Nucl, Phys. Bl, 438 (1967).
J. K. Kim, Phys. Rev. Letters 19, 1074 (1967), and

private communication.

PHASE CONSPIRACY IN UNOCCUPIED HARTREE-FOCK ORBITAI S

W. H. Bassichis and M. R. Strayer
Laboratory for Nuclear Science and Department of Physics,

Massachusetts Institute of Technology, . Cambridge, Massachusetts 02139
(Received 5 May 1969)

Second order energies and the probabilities of two-particle, two-hole components in
the ground states of He and O~, calculated using perturbation theory in Hartree-Fock
bases, show that excitations to high lying levels are more important than the shell rnod-
el predicts. The importance of these excitations stems from the relative phases of the
Hartree-Fock wave functions for unoccupied states and this phase relation can be ex-
plained quite simply.

Hartree-Fock (HF) calculations are presently
being performed in bases sufficiently large that
they may be considered complete for light nu-
clei. '~' It is well known, however, that the bind-
ing energies thus obtained differ widely from ob-
served binding energies if realistic potentials
are used. As Kerman pointed out, ' this lack of
agreement shouM be expected from experimental
single-particle energies and their relation to the
HF energy. Thus an HF calculation should serve
only to define a convenient basis in which to car-
ry out a perturbation calculation. In such a basis,
the first-order correction vanishes and only two-
particle, two-hole (2p-2h) states contribute in
second order, i.e. ,

Here m, n are the occupied HF orbitals, a, b the
unoccupied orbitals; the &'s are the correspond-
ing HF eigenvalues, and V~ signifies the antisym-
metrized matrix element.

An approximate method for evaluating 4E has

been developed and quite reasonable agreement
with experiment was obtained for 0" and Ca '.
The method was applied to all the even-even nu-

clei from helium to calcium with similar suc-
cess. ' The essential approximations were these:
(1) replacing the unoccupied orbitals by plane
waves and the corresponding e's by 8'0'/2m, (2)
replacing the &'s for the occupied states by a con-
stant equal to their average value, (3) taking the
Pauli principle into account approximately. In
order to evaluate this procedure we have carried
out the evaluation of ~E exactly in a truncated,
but very large, basis.

The HF bases were obtained for He and 0" in
a space consisting of the 1s», through the ii/3/2
harmonic oscillator levels and the two-body po-
tential employed was that of Tabakin. ' All of the
particles were treated self-consistently. Doubly
closed-shell nuclei were treated because the HF
orbitals in this case are all eigenstates of l' and j
and are degenerate with respect to j and T, in
the absence of the Coulomb force. This allows a
certain amount of geometry to be done analytical-
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ly so that

~E= QQQ I Q C~"CJ 'Cg, .Cg (ijIl,gIkl)grI',
V( v as JT EV+Ev-en-E8 1'Jkl

(2)

where e, P represent the 2(2j+1) degenerate un-
occupied states of a given l and j; p. , v the corre-
sponding occupied states; and the C 's are defined
by

I~) =g,c, 'In,.f,j,&.

(I«j) are harmonic oscillator states. ) The ex-
pansion coefficients and epsilons obtained by HF
are given in Table I for He4.

The significant point to note in Table I is that
for the pairs of unoccupied HF states, which by
orthogonality must have the form

and

Writing the eigenfunctions as

t'C, +
I
1)

gC, '12&

and the corresponding eigenvalues as &q we have

lma 1, 1

ol

I~,& =f l«j)+~I~ fj&, (4) 12 l 22 2 I, 2

the eigenfunction which is the sum of the two com-
ponents in every case corresponds to a larger
eigenvalue than the eigenfunction which is the dif-
ference. This feature, as seen below, will deter-
mine the character of the 2p-2h state mixing into
the ground state. It is also to be noted that al-
though the occupied orbitals are nearly pure har-
monic-oscillator functions, the unoccupied orbit-
als have appreciable mixing, i.e. , the coefficient
b in (4) is not negligible.

The existence of the phase rule can be under-
stood from simple matrix algebra as follows.
The HF basis can be defined by the fact that in
the HF representation, the HF Hamiltonian does
not connect occupied to unoccupied states. If, in
addition to this, one considers a doubly closed-
shell nucleus (all j shells filled), then the HF ma-
trix in the harmonic-oscillator basis,

&nlhIP& =-
&nl tlat&+Kg(n&ll ~l»&,

Since h» &S» and b» is real, we can write

(1O)

with» 0.

Then ~„=h»+ 2& and ~ =h»- ~& and Eqs. (8)
and (9) become

C -='--'-C -=,' C —,
2 g 1 gh

12 12

C+= + h"C+= C+ (12)

Table I. The Hartree-Pock eigenvalues and expan-
sion coefficients as defined in Eq. (3), for He+. The
phase rule is seen by considering pairs of states with
the same l and j.

will not connect n to P unless they both have the
same l and j. Since in the basis considered there
are at most two unoccupied states of a given l and

j, noted symbolically as Il) and I2), there will be
a number of two-by-two matrices not connected
to any other part of the HF matrix and these can
be diagonalized separately. Explicitly such a ma-
trix is

(&21~ ll) &21~1»)

where

&~l&lj) -=&flflj)+g~&~&ll'~lj&) =~1j p

1/2

1/2
1/2

~l/2

~5/2
~5/2

3/2
~3/2
f7/2
~7/2
~5/2

5/2

hl/2
. 9/2
13/2

-12.5746
5.0273
6.8956

12.6788
45. 6644
22. 9647
57.8694
26. 2201
65.4235
16.4701
44. 2181
18.0403
51.9933
23.9227
56.5564
25. 0396
63.3625
41.3433
44 ' 0878
50.2311
52.1566
58.7923

Cl

0.9944
0.9006
0.8442
0.0339
0.1003
0.4346
0.0075

-0.5312
0.0718-0.9061
0.4231-0.8777
0.4792

-0.8690
0.4949

-0.8514
0.5246
1.0000
1.0000
1.0000
1.0000
1.0000

C2

0.0096
-0.3728-0.4769

0 ' 9149
-0.4036
0.7810-0.5010
0.6832
0.5530
0 ' 4231
0.9061
0.4792
0.8777
0.4949
0.8690
0.5246
0.8514
0.0
0.0
0.0
0.0
0.0

C

0.1054
0.2236
0.2446-0.4023-0.9094

-0.4484-0.8654
0.5011
0.8301
0 ' 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0 ' 0
0.0
0.0
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Since h» contains a large, positive kinetic-ener-
gy term, it is generally positive for the interac-
tion used here and will probably be positive for
any potential of reasonable strength. Thus the
phase rule: C, ' and C, ', corresponding to the
larger eigenvalue, &„ are of the same sign and
C

y
and C, , corresponding to the smaller eigen-

value, &, are of opposite signs.
To illustrate the effect of this phase rule, con-

sider the two unoccupied d,~, states in He':

ld5(2) g
= -0.9061I1d,12)+0.4231 l2dsg2) = l1),

id, ) =+0.423lild, q )+0.9061[2d,l )—= i2). (13)

Since the corresponding eigenvalues are e, = 16.47
MeV and &, =44.22 MeV and since the eigenvalue
of the occupied orbital is -12.57 MeV, one would

expect the state with two particles in ~1) to con-
tribute twice as much to 4E as the state with two

particles in ~2). Furthermore, since the proba-
bility of finding such 2p-2h states in the true
ground states is given by

(unno rm aliz ed), (14)

one might expect the probability of finding the
lower state to be four times that of the upper
state. In fact, the contribution to ~E of the up-
per state is five times larger than that of the low-
er state (-0.53 MeV compared with -0.10 MeV)
and the probability of finding the upper state is
two and a half times larger than that of the lower
state (0.36% compared with 0. 14%) ' That this
result is directly attributable to the phase rela-
tions is shown as follows. Ignoring the small ad-
mixtures in the occupied orbital, we have

bE(1, 1)=Q ~0.82V "+0.18V '-0.77Vg»~
JT

EE(2, 2) = ~0. 18Vgr" +0.82Vgr +0.77Vgz' ~,
(2J'+ 1)(2T + 1)

JT

where

Vgr" = ((»,g, )'I Vgl (ldsgmP) g r, Vgr" = &(»~g2P I V~I (2d~gmPzr,

and

g r" =- ((,(.) I V~I ld.~.

For the Tabakin interaction, the values of the nonzero matrix elements are

(15)

(16)

Vox" = -3.0787

2 2493

Vo,
"= -2.2733,

and (15) becomes

Vxo" = -1.8386

V = -1.4209,

V» — 1 4pp5. (17)

bE(l, 1) = — (~
—2.53—0.49+ 1.73['+

~

—1.51—0.26+ 1.08~') = —0.11 MeV,
3

(18)

and A&(2, 2), which differs mainly in the sign of the third terms in the absolute value brackets and, of
course, the denominator, is given by

bE(2, 2) = — (~ -0.55-1.84—1.73~'+
~
-0.32-1.06-1.08~'] = 0.61 MeV.

3
113.58 (19)

This illustrative example overestimates the &E's because the admixture in the s,&~ state was ignored
but still serves to demonstrate the dominant role played by the relative phases.

The overall effect of the relative phases can be seen by comparing the results of this calculation
with one in which all the orbitals are assumed to be pure harmonic oscillators. The results for He~

and 0"are shown in Table II. The column labeled "Denominator" represents the average of & + &

-&, -&~ for states which would correspond to the same number of Ice in excitation in the usual shell
modeL HF labels the Hartree-Fock results, SM(1) the corresponding results when pure oscillator



VOLUME 2$, NUMBER I PHYSICAL REVIEW LETTERS 7 JUr.v 1969

Table II. The contributions to AE and I', the prob-
ability of 2p-2h components in the ground state, as a
function of the energy denominator. The column la-
beled HF is obtained using HF wave functions and ep-
silons, that labeled SM(1) uses instead pure harmonic-
oscillator functions, and SM(2) uses, in addition, mul-
tiples of ti for the epsilons.

Denominator HF SM (1) SM (2)

He
4

Probability ('-o)

SM (1) SM (2)

37.07

56.34
84. 65

-112.66
-140.31

13.97 39.33
20. 78 32 ' 60
24. 12 17.75
26. 79
14.34

8.19
2. 13

Total hE= -20. 46 -32.15

46. 28

28. 59
15.63

7.50
1.99

31.20

16

6.14

6.13
4. 71
3.69

1.56

P 22 23o

21.16
11.79
4.29

1.42

0.29

38.95%

27. 13
8.38
3.05
1.10
0.23

39.89%

44. 11 20. 81 29. 63
77.84 23. 08 36.51

112.13 30.02 24. 59
146.14 23. 89
182.17 2. 20

8.59
0.68

Total hE= -64. 27 -78.96

32.04

36.08

23.23

7.98

0.67

-97.63 P-

19.93 27. 30 34.56
10.77 17.36

7.98
2.12
0.13

9.54

5.74

0.39

19.45

8.35
2. 15
0.15

46. 37% 54. 89~a 64. 66%

functions are used with the HF epsilons, and
SM(2) the results when the denominator is re-
placed by multiples of S~ =16 MeV and pure os-
cillator functions are used. Note that AE is over-
estimated in SM(1) and SM(2) by 50% in He' and
that the admixture of 2p-2h states in the true
ground state is likewise overestimated by a fac-
tor of two in He and 1.5 in 0".' The significant
difference between the results of the two meth-
ods, besides the total bE and QI', is the rela-
tive importance of 2p-2h states as a function of
their unperturbed energy. In the shell-model ap-
proach 40% of the second-order energy shift (for
He') comes from states of 2h~ and 30% from
states of 4hz&. Only about 9% of bE comes from
states of more than 68~. When the phase rela-
tions are considered, i.e. , in the exact calcula-
tion, the contributions from the various shells in-
crease to a maximum at -112 MeV, correspond-
ing to between 6 and 8 hen. In fact, the contribu-
tion from states at higher than 6hcv is 41'%%uo of the
total. Similarly the probability of 2p-2h state ad-
mixture in the ground state of He' decreases
roughly by a factor of 3 from shell to shell in the
shell-model calculation while the 28~ and 4@~
states are equally probable in the exact calcula-
tion. In the shell-model calculation only 10% of
the total admixture comes from states above 4',
while in the exact calculation these states consti-
tute 40'%%uo of the total admixture. Quite similar
statements can be made for the 0" results.

There, however, the effect of the phase relation
is diminished because the lowest lying unoccupied
states (d„, and s», ) do turn out to be nearly pure
harmonic oscillators. The results of Kerman and
Pal indicate that the plane waves which contrib-
ute the most have approximately 100 MeV kinetic
energy and it thus seems that using plane waves
for unoccupied states is a better approximation
than using pure oscillator functions.

The result of the plane-wave calculation for 0"
was &E = -68 MeV. The agreement between this
and our exact result of -64.27 MeV seems to in-
dicate that this method provides a very quick way
to estimate ~E. This, however, must be verified
by considering other nuclei. In applying the
plane-wave method to other nuclei the average &

for occupied states in 0"was used throughout. '
Thus only order-of-magnitude estimates were ob-
tained and comparison is not meaningfuL Calcu-
lations with appropriate average &'s are in pro-
gress.

In these calculations no effort has been made to
remove the spurious states corresponding to mo-
tion of the center of mass. Since the HF state
has the center of mass in its ground state' and
since the potential is only a function of relative
coordinates, this correction can serve only to in-
crease &E and the total probability for 2p-2h ad-
mixtures in the ground state. Furthermore, it is
assumed here that higher lying states, e.g. , M, ~,
and 4d»„will not mix appreciably with the states
included in this calculation. It is unlikely that
these states will affect the phase relation since
such states will not be connected to the n =1
states by the kinetic energy operator and their
different radial dependences should render the
potential terms small. A small mixing into the
lower states is also reasonable from energy de-
nominator considerations but this can only be
verified by beginning with an even larger space.
Such calculations are in progress.

Finally it should be noted that the use of a pure
harmonic-oscillator representation for a pertur-
bation expansion is certainly correct if one in-
cludes, also, one-particle, one-hole states. If,
rather, one assumes that, since the occupied HF
orbitals are nearly pure, a pure oscillator repre-
sentation will approximate the HF unoccupied
states, and carries out a perturbation expansion
ignoring 1p-1h contributions, the results will be
quite erroneous because of the ignored phase re-
lations.

R. M. Tarbutton and K. T. R. Davies, Nucl. Phys.
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18Q' ELECTRON SCATTERING FROM He AND 'He AT 56 MeV
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The nuclear magnetic structure of 3He has been investigated by 180 scattering of 56.6-
MeV electrons. The first observation of the M1 continuum in 3He from 6 to 20 MeV is
reported. The M1 component of the breakup from 3He(e, e )d, p together with 3He(e, e )p,
p, n has been measured and is discussed in light of possible isovector and isoscalar me-
son-exchange currents in the trinucleon system. The elastic magnetic form factor of
He at @=0.561 fm is 0.80, giving a rms magnetic radius a=1.94 +0.19 fm.

The nuclear magnetic structure of 'He has been
investigated by 180 scattering of 56.6-MeV elec-
trons from a gaseous 'He target. For compari-
son, an identical gas target of 'He, which has no

known magnetic nuclear structure, was bombard-
ed under the same experimental conditions.

We present here a report of the preliminary
results which include measurement of a magnetic
dipole continuum up to 20-MeV excitation energy
in 'He, determination of the magnetic elastic
electron scattering cross section at a momentum
transfer of q=0. 561 fm ', and observation of
electrons produced by magnetic bremsstrahlung
from 'He. This is the first observation of the
M1 continuum in 'He and will complement the
well-studied E1 structure of 'He and ~H obtained
by photodisintegration' ' and radiative capture
measurements, 4 and by electrodisintegration
studies. "The elastic magnetic form factor of
He has been previously measured over a wide

range of momentum transfer, 1.0 ~q' &8.0 fm
by Collard et al.' Electrons produced by magnet-
ic bremsstrahlung from 'H have been observed
by Goldemberg' and probably by several others.

Any discussion of the nuclear physics of ~He

must cite the several experiments on the isospin
doublet H and ~He which complement one another
in a forceful way. At the same time one must
draw attention to the rather prodigious theoreti-
cal complexities of the trinucleon systems which
result from adding just one nucleon to the nucle-
on-nucleon potential. We shall review briefly the
magnetic properties of 'H and 'He.

The ground-state magnetic moments of 'H and
'He are +2.9788 and —2.1274 n.m. , respectively.
By adding p. ~,('H) + p, ~,('He) and assuming a
small 'D», component together with the predomi-
nant 8,», the D„,weight is fixed at 3.8%.
There are reasons for excluding the I'„, states.
When the individual moments are then calculated
with 3.8% D state, there remains an isovector
exchange moment (presumably due to meson cur-
rents) of Q. 27 n.m. ' The Stanford measurements
of elastic electron scattering from 'H and 'He

provide both charge and magnetic form factors
over a large range of momentum transfer. To
fit these data, Schiff and Gibson' "calculated T
=

& ground-state probabilities and found Pq = 92 /o,

PD = 6 lo, and Pz.~2' using spatial wave func-
tions of the Irving-Gunn form, e ' /R . Their
results were also constrained by other measure-
ments, i.e., D(n, y)'H, 'H s-'He, 'He(e, e')dp,
and 3He(ij. , v) H, and by variational calculations
of binding energy of the trinucleons. The in-
creased percentage of D„, state and possible
very small admixture of T =

&
S' component led

Gibson to re-examine the isovector exchange
moment which is required by the static magnetic
moments. He found that both isovector and iso-
scalar exchange moments are required to fit the
magnetic form factors. " Thus there is not only
a sizable meson-exchange current in the isodoub-
let but it is presumably of different magnitude in
3He and 'H. Let us now look at some pertinent
properties of the continuum. .af the trinucleon
systems.


