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The ordering of one- and two-dimensional systems with a continuous symmetry is con-
sidered in the absence of a symmetry-breaking field. It is shown rigorously that no
spontaneous ordering can occur; bounds on the order-order correlation function inte-
grated over a subdomain indicate how the short-range order decays with distance.

It has been appreciated heuristically for some
time that in a one- or two-dimensional system,
i.e., a system of finite cross section or thick-
ness, which has a continuous symmetry (such as
the gauge invariance of a Bose fluid or rotational
isotropy in a ferromagnet), the fluctuations in
the order parameter are so large as to destroy
any ordered state with spontaneously broken
symmetry even though such can arise in the fully
three-dimensional system. Hohenberg' has dem-
onstrated that Bogoliubov's inequality,

2(4, &'&&) ~HTI &[~,&]& I'i([[C,&D] C')]& (l)

in which 3C„ is the Hamiltonian for the system
confined to a domain 0, can be used to substanti-
ate this idea, and Mermin and Wagner' have
proven that if the dimensionality of 0 is less than
three, an isotropic Heisenberg ferromagnet can
exhibit no spontaneous magnetization, i.e.,

Mo(T) = lim Af(T, II) =0 (T) 0).
8~ 0+

(2)

As indicated by (2) [see also Chester, Fisher,
and Mermin, ] the existing proofs' first introduce
a symmetry-breaking field q (the magnetic field
II for a ferromagnet), then proceed to the ther-
modynamic limit [volume V(Q) -~], and finally,
show that the induced order parameter 4'(q) van-
ishes as the field 7? is removed (iris'-0). For a
magnet O'-M, while for a Bose fluid one con-

sider s

+(T, q) = lim [V(A)] 'f„(((r)&„dr.

These results are satisfying, but they leave
open some more fundamental questions, namely:

(A) How does the order-order correlation func-
tion o(r, r') behave as ir-r'i- '? For a magnet
with localized spin variables S(r) we may take

o(r, r') = (S,(r)S, (r')& or (S,(r)S (r')). (4)

&& f„dr f„dr'0'„(r, r'), (6)

One would like to say something about the rate of
decay and to prove that o'-0 as ir-r'i- ~, so as
to demonstrate the absence of long-range order
[o(~) -=0]; but as a matter of fact, even when (2)
holds one cannot be sure that a(~) =0.' For a
Bose fluid one is interested in the off-diagonal
order or one-body density matrix

o(r, r') =(( (r')((r)&.

A second question is the following:
(B) Can one dispense with the symmetry-break-

ing field in proving the absence of ordering'?
(This question is especially pertinent for a Bose
fluid, ' where the relevant "off-diagonal" field can-
not be realized physically. ) An answer might be
provided by considering (with q=—0) the rms order
parameter 4 defined by
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where, as above, the subscript 0 indicates that
the finite system is implied. One normally ex-
pects that

4', —= lim 4(q) =c4„

which would be of order unity for d =3, but this
has never been shown generally [.Here c is a
constant depending on the symmetry group and
the precise definition of o(r, r ).]

In this note we present, we believe for the first
time, rigorous answers to these questions. Spe-

cifically we have answered (B) by proving that
vanishes for all T & 0 if the domain 0 can be

contained in a cylinder of finite cross section (d
=1) or between parallel planes of finite sepa. ra-
tion (d =2). As regards (A) we prove that for g=0
and any (reasonably shaped) subdomain FCQ
which constitutes a "slice" of 0, as shown in
Fig. 1, we have the bounds

4P ( Fj( const && [ln V(F)]'", d = 2,
( const && [V(F)]-'~',

as V(F) -~, where

[V(F)eg(F&]'=V(F)n{f)= f,dr frdr'f*(r')f(r)o(r, r') (8)

in which
~ f(r) ~

= 1. [In a lattice system sums
over cells replace the integrals. ] This proves
that there can be no (short) long-range order. '
Roughly speaking it also shows that o(r, r') must
decrease faster than 1/In(r-r'( for d =2 or 1/
)r-r'P' for d =1. [This does not insure that
o(0, r') is integrable; thus "weak long-range
order, " or an infinite "susceptibility, " could
still arise. ] If Q and I" have sufficiently regular
shapes that f(r) =e '' can be regarded as a
"single-particle state" of a Bose system, then
(7) asserts that there can be no macroscopic oc-
cupancy of the state R, i.e. , nK/N-O, where N
=N(F) is the (mean) number of particles in I'.
Finally we note that (7) remains va. lid even if a
symmetry-breaking field is imposed anywhere
outside the subdomain I'.

We now sketch the proof of (7) for a two-dimen-
sional Bose system (the d =1 case is similar);
the proofs for magnetic systems are somewhat
simpler as are the proofs that 0 = 0. These
proofs, and further details, will be published
separately. Ne suppose that the slice subdomain
l is surrounded by a corridor or channel 6, of
thickness say between 5 and 2b. When V(F) -~

(m 'N(FUE)[k +A]) (10)

where the second line follows by noting that
~ Vg ('

reduces to k' in F but in 4 becomes k'+
( Va(',

which is bounded by k'+ b '. Thus the parameter
& = (I/O)' N(h)/N(F Ub ) grows small as V(F) -~.
Next we choose'

g = fdr fdic f*(r)e 'K 'f (R)g~. (r)g(ft), (11)

where P(r) ~ is unity for r in 1 but vanishes other-
wise. Then the numerator in (1) becomes

we assume that V(h)/V(F) approaches zero as a
normal surface to volume ratio. Bogoliubov's
inequality is now applied with

C= fdrg(r)p(r) = fdrg(r)g~(r)g(r), (9

which is the normal choice except for the weight-
ing factor g(r) =a(r) exp[iR r] (k arbitrary),
which we suppose vanishes identically outside
FUL. We take a(r) twice continuously differenti-
able with a(r) = 1 for r in I', and

~
Va~- 1/b in 6,

where a(r) goes smoothly to zero. It is assumed
that X„contains (i) a. kinetic-energy term, (ii) on-
ly normal "diagonal" many-particle interactions,
and (iii) a wall potential which ensures that all
wave functions vanish smoothly on the boundary
of Q. We then obtain (&=1)

([[C,K„],Ct]) =m 'fdr
/ Vg f'(p(r))

(12)l([C, &])I' =
I V(F)(n(f)-n(fe'" ' ])]',

where nf fj is defined in (8). If D is the spacing
between the parallel planes containing 0, we
have' for all r and r' in Q (and I')

FIG. l. Sectioned "hvo-dimensional" domain 0 show-
ing a "slice" subdomain F and a surrounding corridor
b, .

'+(») 'fd'k((e'"" ' ' =&(r-r'),
h~
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where k= (k~~, k~) in which k~ represent a dis-
crete but complete set (including kJ =0) of wave
vectors normal to the bounding planes. Now we
integrate the inequality for ~k~[[ - K with k~=-0. '
We may extend the integral (and sum) to all k
over nonpositive terms on the right-hand side
and nonnegative terms on the left-hand side. For
the right-hand side we find, dropping a positive
(squared) term,

R ~ (mk, T)[V(I')'/N(I UZ)]

x [n'( f)I(X)-2n(f )Z(X) ], (14)

where c, is a constant and

0- Q(f)= f dR f dr f dr'f*(r)f(r')

x &p(R) 0'(r) k(r') & (18)

If the number of particles in I' were fixed (defi-
nite), this would reduce simply to N(I')V(i )n( f).
However, we can allow for the natural fluctua-
tions by using the relation'

f dr f dr'[&p(r)p(r')&-&p(r)&&p(r'))]

= 0 sTp(I')'V(I')Kz [1+s(I') ],
where K~ is the isothermal bulk compressibility
of the fluid in I' which we may assume is bound-

ed, and e(I')-0 as V(I')- ~ represents a surface-
to-volume correction. Application of Schwarz's

where, denoting the restricted integration by sub-
script z,

I(X) = (2w)
'fd'k/(k'+ X) = (4s) ' in(K'/X)

as X-O,

and

0 ~ J(A) = (2&) 'f d'kn(fe'"' ' )/(k'+A)

~i '(2s) 'fd'kn(fe'"')
~ -'DN(r)/V(i') = ~ -'D p(r),

where (i) the positivity of n was used, (ii) the in-
tegration was extended to all k, and (iii) relation
(13) was applied. On the left-hand side we write
&(At, A)) = 2&AAt)+&[At, A]) and extend the inte-
gral on the first term (only). On using the com-
mutation relations and discarding appropriate
negative terms we find

L -D[Q( f)+p(1)V(1')'-V(1')n( f)]
+ c,V(I')'K'n( f), (17)

inequality to (18) then yields

Q(f)- c,p(I')'[k TK (I+a)]'"V(I')' '

+p(I') V(I' )'n( f}, (20)

qp'+ q, [V(1') ] '"~ O'I(X) -4' inV(I'), (21)

where q, and q, are intensive parameters depend-

ing on temperature and density. Qn multiplying

by I(X) and choosing V(I') so large that lnV(I')/
V(I')'~'«1 we obtain the desired result (7).
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58imilar proofs have been presented for crystalline
ordering, other sorts of magnetic ordering, etc. , e.g. ,
¹ D. Mermin, J. Math. Phys. 8, 1061 (1967), and

Phys. Rev. 176, 25o (1968).
The point is that o.(r, r') is defined by taking the ther-

modynamic limit with fixed r and r'; thus o.(~) is then
the "short long-range order" in contrast to the "long
long-range order" o „in which ~r-r

~
is, say, kept

equal to L. V(Q)] as the thermodynamic limit is taken.
A discussion of this question has been presented by

G. V. Chester fLectures in Theoretical Physics (Uni-
versity of Colorado Press, Boulder, Colo. , to be pub-
lished), Vol. XI] and our work follows his in spirit.

Following Chester, Fisher, and Mermin, Ref. 4.
~To prove 0 vanishes we also employ a lower limit

K
p
(

( k[~ ) which then plays a similar role to A, .
' This is merely a form of the standard (compressibil-

ity)/(fluctuation) relation. Although we are not aware
of a rigorous general proof, we accept it because, here,
we need to assume only that (19) is valid with some
constant K~. This simply embodies the physical as-
sumption that the density fluctuations are "normal. "

where c, is a constant
Finally on collecting terms and using the defini-

tion (8) the inequality reduces to the form
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