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It is shown, contrary to previous work, that in the presence of large shear (J~/R&
& Rp j0j) Rn unstRble un1vex sRl 6igenIQode exl sts The cx 1tex'1on fox the stRb1 1lzRt1 on of
this mode for long wavelengths (k ~a; & 1) is L~/R& & (M/m)ti3 which is more restrictive
than the usual criterion for stabilization of the transient (convective) modes ordinarily
considered.

For the past several years, widespread interest has been generated from the assumption that the
universal mode' in a magnetic field with sufficient shear only exhibits a transient (convective) insta-
bility since unstable eigenfunctions have not been found. '' Instead it was observed that, for the uni-
versal and other related modes, a wave packet amplifies as it propagates ' and therefore a system
was considered unstable if (1) the fields amplify to a level detrimental to confinement, or (2) nonlinear
wave reflections occur that establish a standing wave. "

Contrary to previous work, we show in this note that a normal mode always occurs. From this mode
we obtain a stability criterion that requires more shear to stabilize the universal instability than hith-
erto predicted, and thus the previous criteria are irrelevant.

%e consider the collisionless limit here; however, similar arguments pertain to the collisional
case. %e analyze the slab model of Krall and Rosenbluth, ' where the velocity distributions are Max-
wellian, the magnetic field is given by B = &,[z+ (x/I, )y j, and the density varies in the x direction.
The perturbation is taken to be y(r, t) = y(x) exp( —i~t+ ik&y), and the equation governing the potential y
can then be written as the following operator equation'.
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The subscripts i and e refer to ions and electrons, respectively, ri=T, /T, is the ion-electron temper-
ature ratio, o~ = —k&v, h'/oi, R&, k~~ =k~/I-, is the diamagnetic drift velocity, Rp = ~n(x)/n'(x)

~
is the

scale length of the plasma and n(x) the plasma density, oi, is the gyrofrequency, v,
„

is the thermal
velocity, and a is the gyroradius. In addition, we have made the following standard assumptions:
k Xo, k~„~/oi„o~/k~~v,„,&1. Also we consider I. /R~ &4&2R~/a; since it was in this limit that pre-
vious analyses assumed that the normal modes vanished, and in this range the spatial variation of Rp
can be neglected.

To analyze Eq. (1) we need only make a simple expansion in x and d'/dx' which is valid in the limit
k a;, k~~ v, h, /c~ & 1, which will be justified a posteriori. We then obtain

(2)
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where

m
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2

Q(x) =Q~(x)+~Qi(x), Q (x) = -1+

a&' ——a —lnIoe

It is in the treatment of this differential equation that the previous investigations have gone wrong. Es-
sentially they have demanded that a proper normal mode must be oscillatory in the vicinity of x = 0 and
evanescent for x large, and since this differential equation leads to the inverse behavior they argue
that there are no normal modes. However, the above boundary conditions are not the most general
ones; specifically, the proper conditions are waves with outgoing energy flux for large x. What is
then found is an eigenmode of the system where in the interior a standing wave is set up and outside
there are outgoing waves carrying off energy. " In the absence of an energy source such behavior
would normally lead to a temporally damped mode. However, in the present analysis this damping
mechanism competes with the instability mechanism (inverse electron Landau damping) and a new,
correct stability criterion is obtained,

It should be emphasized that the approximations governing Eq. (2) need only apply internally to the
region of wave reflection (of the order of the turning point) since outside, the solution to Eq. (2) con-
nects on smoothly to the eikonal solution of Eq. (1) [p(x) -expif k~dx]. From Eq. (1) it is readily as-
certained that for large x (k~~ v, „;/&u 1) the outgoing wave, which was primarily oscillatory for small-
er values of x, spatially damps because of the onset of ion Landau damping.

To analyze the above differential equation, we temporarily ignore Qi(x) [since it is small compared
with the individual terms of Qz(x)] and obtain as a soiu)ion (P„is the Hermite polynomial)

p = ff ((io)'"x)exp(--, i''), n = 0, 1, 2, , g = 1+ co (4)
I-sa; Eoe

Note the negative sign in the exponential; this is because the wave is backward, i.e., (k /cu)du&/dk &0,

and as previously stated, the proper boundary condition is outgoing waves at large x. Now the disper-
sion relation in this limit is of the form

1+g v . I+q e kvvt. hi(2 +1)1+ g sa; (5)

Since the right-hand side of Eq. (5) is small, we have with e = e, + 5ur

&u, = — ' " ~, 5&v = i' k-v, t, i i, (2n+ 1) (damping).

To obtain the stability criterion we must compare Eq. (8) with the growth obtained from inverse elec-
tron Landau damping. We estimate the latter contribution by evaluating Qi(x) at the turning point which,
in the present limit, is determined from the equation Qz(xT) = 0 or

~ ~
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(Note that xT is on the -45' line in the complex x plane. ) Finally, with the addition of Qi(xr) we obtain
the dispersion relation

(5a.)

from which we obtain as our stability criterion for the normal mode

(8)

with n = 0 the most serious mode.
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Before proceeding, we must check to see whether our assumptions are correct; namely, is

which is the condition that ion Landau damping be negligible~ Inserting Eq. (8) into Eq. (7) we obtain

0 xyvg '
mmes

"' 1-I e

which leads to the trivial constraint b & M/mq. Another negligible constraint demanding k~~ v, h, /&u &1
yields b &my/M.

From Eq. (8) we see that the condition for stabilization of the larger wavelengths (b & I) is of order

I.,/Z, &(M/m)'",

which is more restrictive than previously derived criteria. Moreover, we see that effectively there
is no stabilization for very large b (1 «b &M/mq).

In conclusion we have shown that: (1) Large shear does not eliminate normal mode solutions. (2) This
solution predicts that shear is a relatively ineffective stabilization mechanism for the universal mode

[L,/R. &(M/m)"'I. (3) The studies of convective modes (transient responses) lead to a more optimis-
tic stability criteria [L,/R. &(M/m)'"&& (No. of e-folding lengths)j, and hence is not the pertinent con-
dition for stabilizing the universal mode.

%e wish to thank Dr. R. Pellat for several important conversations.
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