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one must use the more general result given in Eq. (5) of the present paper. We (DFS) wish to thank Dr. J. H. Weis
for calling this problem to our attention.

SJ, B. Bronzan, Massachusetts Institute of Technology Reports No. CTP-57 and No. CTP-61 (to be published);
J. C. Taylor, Clarendon Laboratory Report No. 85/68 (to be published); P. K. Kuo and P. Suranyi, Phys. Rev. Let-
ters 22, 1025 (1969).

Here 0'~ and P~ are the Regge trajectory and residue functions for the nth daughter trajectory which couples to
states with parity +(-1)J ~, 7'~ = +1 is the signature of the +th trajectory, and v=O (&=&) for boson (fermion) trajec-
tories. We have combined the particle spins using 3j symbols in a manner which is convenient for the study of the
kinematic constraints at s =0 and pseudothresholds; & and S' are not the usual channel spine. The functions e &&J (g)
are rotation coefficients of the second kind [M. Andrews and J. Gunson, J. Math. Phys. 5, 1891 (1964)],

(X+p)/2
e&„J(e)= ae i( i2)(~ ~)[I'(j+A+1)I'(j+p+1)I'(j-1+1)1'(j-p+I)]'i'

z-1 -J-~-(&+V
~ - 2

2E& j+A, +1,j+P, +1;2j+2;

~The threshold constraints will be discussed separately (S. A. Klein, to be published).
Cf. , for example, E. J. Squires, Complex Angular Momentum and Particle Physics (W. A. Benjamin, Inc. , New

York, 1963).
~3Klein, Ref. 11; L. Durand, III, P. M. Fishbane, and L. M. Simmons, Jr. , to be published.

The irreducible unitary representations of the Lorentz group are labeled by parameters jo and 0. which give the
values of the Casimir operators ~--K =jo +U--l, z K=-ijoo, j 0=0,z, l, ~ ~, 0 pure imaginary. The representa-2- 2

tion coefficients are given by matrix elements of the boost operators, d&&i&io'~(p) = (jp'Ip le 6 3Ijool'p). These
functions are discussed, for example, by S. Strom, Arkiv Fysik 29, 467 (1965), and 33, 465 (1966); and by%. H.
Greiman, thesis, Iowa State University, 1969 (unpublished), who use the notations&ii (P,jo, io) f-or the same
functions.

i50ur interpretation of Eq. (2) differs profoundly in this respect from the interpretations given their (equivalent)
results by Bronzan, Taylor, Kuo, and Suranyi, Ref. 9.
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An explicit example of crossing-symmetric Regge-behaved amplitudes is constructed
for nonlinear trajectories. The Regge behavior is proved for Ret-+~, except on the
real axis, as well as for Ret- -~.

In this Letter we present an explicit example
of crossing-symmetric, Regge-behaved ampli-
tudes (so-called Veneziano representation') for
nonlinear trajectories. It is given in the form of
an integral representation involving parameters
associated wtih Regge trajectories. Both Regge
asymptotic behavior and fixed-u behavior are
proved along any direction on the complex plane
except on the real axis.

Let us first construct an amplitude having poles
at desirable locations with residues of the cor-
rect angular dependence, that is, an amplitude
in which (i) poles should be located at a(s) and
a(t) =n, where n is a non-negative integer, and
(ii) the residue at n(s) =n [or a(t) =n] should be
an nth polynomial of f (or s), barring ancestors.
It is easily seen that the following integral repre-

sentation meets these two conditions:

( ( ) (t) ) I d c((s) 1 + zlR(s)f (z)
j 0

i -0.'(t)-1+ Aa(t)f (1-z)

where 0. is a Regge trajectory which obeys a dis-
per sion relation'

s I', Ima(s')
n (s) = as + b + — ds ' .. .7t' S (S -S)

and 40. is the deviation of n from a linear trajec-
tory, for which we assume in our representation

lim b,a(s)/s =0.

The function f(s) is to satisfy the following im-
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portant properties:

f(0) = 0 and f(1)= 1,

d f(z)/dz '=0 at z =0 and 1

(4)

(5)

for an arbitrary positive integer m. A class of such functions can be constructed explicitly. We shall
choose here a function defined as

f(z) = f-dx (—lnx)'" [-ln(1—x)]'"~' ', c = f dx (-lnx)'""[-ln(1 —x)]'""
C 0

It is straightforward to check the property (5) for the function f(z) defined above. It is also evident that
f(z) is regular, when regarded as a. function of a complex variable z, except at z =0, 1, and ~.

Since there is no pinching singularity in (1), all singularities originate in the two end points. In the
neighborhood of z = 0, (1) is rewritten as

f dzz @ '(1—z) ~' ' " '~ 'exp(Au(s)f(z) Inz+bu(t)[f(1 —z)—1]ln(1—z)). (7)

Thanks to (5), the exponent Au(s)f(z) lnz+hu(t)[f(1-z)-1]ln(1-z) approaches zero as z-0 faster than
any finite power of z. The third factor of the integrand in (7) does not give rise to any singularity in a
finite region of s and t. Expanding (1-z) ""' "~ ' around z =0, one finds poles at

u(s) = n (non-negative integer),

with a residue

—,[u(t)-~u(t)+11[u(t)-au(t)+2] - [u(t)-au(t)+n]
1

which is certainly an nth polynomial of u(t)-Au(t) and therefore of t. The same argument follows with
s and t interchanged, since (1) is symmetric under the interchange of s and t. We have thus proved
that the representation (1) has poles at desirable locations with the correct angular dependence.

Our next task is to examine the high-energy behavior of (1). The conditions (i) and (ii) given at the
beginning are not sufficient for producing the Regge asymptotic behavior. The behavior as t- - is
obtained in a straightforward way if 4u(t) satisfies (3); the dominant contribution comes from the in-
tegral over z in the region around the maximum of the exponent, namely, in the neighborhood of z = 0.
One immediately finds

lim $(-u(s), -u(t))= f dzz ~~ 'exp([u(t)-&u(t)+1]z)= I'(-u(s))[-u(t)+bu(t)j "~'&.

On the other hand the asymptotic behavior as Ret
-+~ is less trivial to establish. An integral rep-
resentation like (1) does not define a function in
the region where u(t) ~ 0 until it is continued ana-
lytically. The infinity point is an accumulation
point of poles, or an essential singularity; so one
must carry out analytic continuation to establish
the same Regge behavior in the limit Ret-+~.
This problem did not come out explicitly in the
Veneziano representation since it was overcome
by use of the well-known analytic property of the
gamma function.

To investigate the asymptotic behavior as Ret
-+~, we rewrite (1) using the substitution z
=1-e ~ as

f, dy exp([u(t)-Su(t)f(e «)]y + [-u(s)

+au(s)f(1-e «)—1]ln(1—e «)]. (11)

We regard (11) as a function of the complex vari-
able y. The integration over y is along the real
axis. For —,'n'&argt & gr the integral as it stands
is convergent because of (3), (4), and (5), thus
giving the asymptotic behavior of (10) again. For
the other range of the angle ——,'r&argt& ~T[ we ro-
tate the path of the integral over y from the real
axis as is shown in Fig. 1. If we are allowed to
rotate it up to the ray with argy =5, we are able
to establish the Regge-asymptotic behavior in the
region ~~-5 &argt & ~m-5, for we can repeat the
argument leading to (10). To complete the rota-
tion, we must make sure that the contributions
from the large and small arcs vanish as R —~
and r-O, respectively, and that under the rota-
tion the path does not pass over singularities
marring the Regge behavior. The former is, in
fact, realized since the integrand in (11) is es-
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FIG. 1. (a) Rotation of the integral path. The hatched
hemisphere is the angular range of the variable t where
the Regge asymptotic behavior is proved. Singularities
are located on the imaginary axis of the complex y
plane. {b) Rotation and deformation of the integral
paths on the ce plane.

timated as

f dy- f dHRe exp([n(t)-sc. (t)f

x (exp(-Re"))]Re"),
where ~f(exp(-Re )) ( behaves like exp(-8 cos8
xlnR) on the large arc; so it goes like - d8A
xexp[~n(t)~icos(y+8)], where cp=argt, as fsr
as I &I &2v. Therefore it vanishes as R-~.
Likewise, the contribution from the small arc is
also shown to vanish as r -0 if

~ 5( & 2m and n(s)
(0. As for singularities passed over by the path,
one can easily see from the analytic property of
f(e «) that there is no singularity in the first or
fourth quadrant. Since ln(1-e «) as well as the
function f produces singularities on the imaginary
axis, ~

5
~
= ~w is the boundary of the rotation of

the path.
In this way we have proved the Regge asymp-

totic behavior along any direction on the first
sheet of the complex t plane except on the real
axis:

lim $(-o.'(s), -o.(t)) = I'(-o. (s))

x(-n(t)+go;(t))"i &. (12)

w = inz/(1-z). (13)

The integral over w then extends from - to +.
We split it into two parts:

$(-a(s), -a(t)) = (f „+f )dw. (14)

The first part is well defined as Ret-+, while
the second must be continued analytically. The
singularities of the integrand are located at w
= +(2n+1)vi Q = 0, 1, 2, ~ ~ ~ ) and ~ on the w plane.
The integral path of the second part is rotated
as is shown in Fig. 1(b) until it makes the inte-
gral convergent as Ret-+~ (the contour C,).
The contribution from the large arc vanishes as
before, and we are able to choose a new path C,
without encountering the singularities on the im-
aginary axis, as far as Ret +, except along
the real axis. Deforming further by a little bit
the new contour consisting of C, and C, [see the
contour C in Fig. 1(b)], we find the leading con-
tribution comes from the region of the integral
around either zo =+mi, depending upon argt.

We thus obtain the asymptotic behavior as Ret
-+ with u fixed as

(s) (t)) i & -a(w-e) [Imt[

where e is an arbitrarily small positive number
and a is the slope of the linear part of the trajec-
tory. This behavior is essentially the same as

More careful treatment will be needed to derive
the Regge asymptotic behavior right along the
real axis, just as in the case of the Veneziano
representation. We shall not go into this pro-
gram in the present paper. It is worth mention-
ing here that by looking at nonleading terms in
the Regge asymptotic expansion we find no con-
tribution characteristic of usual Regge cuts in
our representation. On the other hand, Roskies
has found terms like Regge-cut contributions in
his model. The discrepancy originates obviously
in that his model involves ancestors and exhibits
the Regge behavior like [-n(t)] ' ', instead of
[-o.(t)+&o.(t)]' ~ ) as appears in our case. Our
present example, therefore, indicates that once
one eliminates ancestors, one may have quite a
different l-plane analyticity.

Finally, we make sure that (1) damps fast enough
as

~ t~ -~ with u fixed. Because of the symmetry
in s and t, it is sufficient to look at Ret -+ only.
In line with our having not yet established the
Regge behavior along the positive real axis, we
shall show it except along the real axis. For this
purpose we rewrite (1) in terms of a new variable
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Veneziano's, although we do not obtain an explic-
it form. We do not need any restriction stronger
than (3) in deriving the correct asymptotic be-
havior with u fixed. A stronger restriction might
be imposed if one requires the good behavior
along the real axis. 4 It is necessary for the pur-
pose of physical application to polish our repre-
sentation so as to validate the asymptotic be-
havior along the real axis. But we believe that
the present formula will be the first step towards
constructing more realistic formulas with non-
linear trajectories.

The present representation reduces to the beta
function in the limit of a linear trajectory AQ. =0.
It is straightforward to construct an analog to the
Lovelace-Veneziano formula' out of our formula.
Since we have introduced widths into resonances,
we are in a position to impose elastic unitarity
and to fix partly the ambiguity of adding satel-
lites. But the present formula is still imperfect
in that the degeneracy is not resolved completely
among masses or total widths.

The author is grateful to H. Sugawara for help-

ful comments and to K. Kikkawa for useful cor-
respondence.

|G. Veneziano, Nuovo Cimento 57A, 190 (1968).
We have assumed, in accord with (3), a once-sub-

tracted dispersion relation for e(s) with a linear de-
pendence in front. The restriction will turn out to
play an important role later in deriving the Regge be-
havior. In this connection see R. Z. Roskies, Phys.
Rev. Letters 21, 1851 (1968),

3A class of functions satisfying (5) is sometimes
called van der Corput's neutralizer. See, for example,
E. T. Copson, Asymptotic Expansion (Cambridge Uni-
versity Press, London, England, 1965), p. 24. Why
we use (6) instead of the more familiar form

is to improve the behavior at the essential singularities
a=0 and 1. This milder behavior at z=0 and 1 is in-
dispensable in deriving the Regge behavior as Ret
~+oo

4

4It is also likely that a modification may be necessary
for the neutralizer f(z),

5C. Lovelace, Phys. Letters 28B, 265 (1968).

ERRATA

BROKEN-DUALITY MODEL FOR THE REAC-
TION PP —m'd. V. Barger and C. Michael [Phys.
Rev. Letters 22, 1330 (1969)].

The data at 21.1 GeV/c attributed to Allaby et
al. (Ref. 2) were taken from a preliminary ver-
sion of the paper. The residue parameters of Eq.
(6) obtained from a fit to the data as given in the
published version are a(N ) = -0.94, a(N&) =8.7,
b(N ) =-1.40, and b(N&)=0. 23.

QUASIELASTIC RAYLEIGH SCATTERING IN NE-
MATIC LIQUID CRYSTALS. Orsay Liquid Crys-
tal Group [Phys. Rev. Letters 22, 1361 (1969)].

The three textual mentions of Ref. 1 on page
1363 (lines 17 and 24 of the first column, and
line 2 of the second column) are erroneous; they
should read "Ref. 3."
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