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We present the most general forms for the trajectory and residue functions for daugh-
ter Regge poles which are consistent with analyticity and unitarity. Our results hold for
arbitrary masses and spins of the external particles, all types of conspiracy, and gener-
al, nonparallel trajectories.

Two major problems are encountered in the construction of Regge-type expansions for two-body

scattering amplitudes for general masses and spine of the external particles: (i) The individual terms
in the expansion for an s-channel process 1+2-3+4 contain spurious singularities at s = 0 unless %zan

=m, and m, =m~. (ii) The helicity amplitudes used to describe the scattering of particles with spin are
not all independent at s = 0 and at the pseudothresholds and thresholds, s = (m, + m, )' and s = (m, + m4)'.
The singularities at s = 0 can be eliminated in the Regge expansion by the introduction of an infinite se-
quence of daughter Regge poles. ' However, the conditions which ensure that the fu11 scattering ampli-
tude is analytic at s =0 impose nontrivial constraints on the behavior of the trajectory and residue
functions near that point. Because of the kinematic restrictions on the helicity amplitudes at s = 0 (con-
spiracy conditions) these constraints can connect the trajectory and residue functions for poles of op-
posite intrinsic parity (conspiracy). The residue functions must also be adjusted to satisfy the kine-
matic constraints at pseudothresholds and thresholds.

The problem of determining the most general forms for Regge trajectory and residue functions which

satisfy the constraints imposed by (i) and (ii) has been considered by many authors. ' With the excep-
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tion of very recent work, ' ' the results which are available deal only with the first few terms in the
Taylor series expansion of the trajectory and residue functions near s = 0,3'4 or are confined to the un-
physical case of parallel Regge trajectories. ' In this paper, we present a complete solution to the
problem. We give the most general form for the trajectory and residue functions for daughter Regge
poles which are consistent with the requirements imposed by analyticity and unitarity. Qur results
hold for nonzero (but otherwise arbitrary) masses and arbitrary spins of the external particles, all
types of conspiracy, and general, nonparallel trajectories.

Qur derivations of the most general forms for the Regge trajectory and residue functions near s = 0
are based on the following requirements: (1) They must give Regge asymptotic behavior. We assume
that the helicity amplitudes f z ~ . z ~ have asymptotic expansions of the Regge type for s small and t
(or cose, ) large, "

g g.C s S'—
( 1)

— +
y |+ 3 3 [(2Z+ 1)(2pe+ 1)]1/2 1 S 3 4

X3Q; XgX2
A, -X -A. A. -A. -A. '

SS' 2 3 4

+ background terms.

The trajectory and residue functions must be such that Eq. (1) is consistent with the known analytic
properties of the complete helicity amplitudes, in particular, the kinematic constraints at s = 0 and at
the pseudothresholds. " (2) The Regge residues must factor. This property of the residue functions is
a consequence of analyticity and unitarity as applied to the partial-wave 8 matrix, and must hold ex-
cept at points where there are accidental collisions of different trajectories. " We assume that such
collisions do not take place at s = 0. In this case the trajectory and residue functions must be analytic
functions of s (boson trajectories) or of W=s "~ (fermion trajectories) in some neighborhood of the
points s =0 (W=0). (3) The Regge trajectories (leading trajectories, conspirators, and daughters)
cannot be parallel. ' This statement is a direct consequence of the analytic properties of the trajectory
functions combined with theorems on their threshold behavior which follow from unitarity. " (4) The
helicity amplitudes must be analytic functions of the external masses. The use of mass analyticity is
crucial if one is to obtain the Regge expansion for equal-mass configurations as a smooth limit of the
result for general masses.

Our basic results have been derived by two quite different methods. Details of the derivations will
be published elsewhere. '3 In the present paper, we shall simply quote the solutions to the problem.
As is well known, ' ' the different possible solutions can be labeled by a parameter j, which assumes
integer values for boson trajectories, and half-odd-integer values for fermion trajectories. This pa-
rameter is identified in the group-theoretical approach to high-energy scattering with one of the quan-
turn numbers necessary to label an irreducible representation of the homogeneous I orentz group. ' In
the present analytic approach, the value of j, may be associated with the dominant helicity: Only those
s-channel amplitudes with A. = ~'=+j, contribute significantly to high-energy, small-momentum-trans-
fer scattering in the t channel, t-~, s-0.

The simplest constraints on the daughter Regge trajectories are well known: Successive trajecto-
ries have opposite signature, 7',=(—1)" „7dans=0 intercepts spaced by integers, o., '(j„0)=n, '-n,
n =0, 1, 2, ~ ~ .' ' The remaining constraints on the trajectory functions" are summarized for general
values of j0 and n by the formula

o.„'(j0,s)+n =f„,(o.„',s) + si0[I'(o„'+ja+ 1)ji'(o„' —ja+ 1)]f ~(o. ', s),

where

I'(n+ 1)I'(2z+2+n) . (;)
I'(n-j+ 1)F(2@+2+ nj)

(3)
J=O

For j0=0 (the case of nonconspiring trajectories), the two terms in Eq. (2) are identical in form, and
the trajectories of opposite parity are completely independent. For all other values of j0, trajectories
of opposite parity are correlated (parity-doubled conspiracy). The MacDowell symmetry of fermion
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trajectories appears automatically: For fermion trajectories, 2j, is an odd integer, sjo= W'jo is an
odd function of W, and n~ (W)=n, '(-W).

The same functions aj~'(s) appear in the expressions for all the n, '. These functions are not arbi-
trary, but can be determined successively in terms of the n~' by using Eqs. (2). A given function a, ('~

will clearly depend on all the trajectory functions mJ' for j ~n. The relations among the trajectory
functions n ' characteristic of (conspiring) daughter Regge trajectories arise from the fact that the

aJ ' must be analytic at s = 0 if the helicity amplitudes are to be analytic at that point. It is clear from
Eq. (2) that this condition implies that the mth derivatives of the functions o.'~ +n, and s o(n, -n )
at s =0 can be expressed for m & n in terms of the first m derivatives of the quantities nj + Qj and
s jo(oj' —n, ) with j &m. The nth and higher derivatives of n '+ o.', and s jo(o., '-o., ) are arbi-
trary.

We wish to emphasize strongly that the analyticity constraints at s = 0 relate only the intercepts and
the first n-1 derivatives of n, ', n, ', , &O'. They do not determine the complete behavior of these
(analytic) functions. Consequently, Eqs. (2) and (3) do not constitute a set of polynomial equations for
the e ', ' as at first sight seems plausible. The quantities with a clear dynamical significance are the
trajectory functions themselves, which give the location of the poles of the partial-wave S matrix in
the complex j plane. The functions aj ' (s) have no dynamical significance, and may have singularities
away from s =0.' Although we do not, therefore, have a parametrization for o.~" in the usual sense, "
Eqs. (2) and (3) can be used to construct Taylor series expansions for the trajectory functions valid
near s =0. The fact that the trajectories cannot be parallel implies, however, that the aJ ' cannot van-
ish identically. It is easily seen in this situation that the region in which the first few terms in the
Taylor series provides a good approximation to the trajectory functions near s = 0 shrinks rapidly for
large values of n.

The Regge residue functions may be written in the form

&., s v„s"' = P. sv"'(,0-'. ', &)P. sx"'(,&., ', s)

The factor which describes the 1, 2 vertex is given by
n S

p„s zjo' =[1-g, '(n ')] '"Q Q +(& ', n, j,j,j ')s& i+lia &olb'2gj j,(s)'
J=o Je =

x [d ~jo, cf~ +/7 i+1(P ) ~, ~ ( 1)s —v+2s2d jo, Ix~ +/7 i+ 1(P )]

The function g»'(z) is defined in terms of the f's in Eqs. (2) and (3):

(4)

g (z)= (f (z —s)+s [jIo"( zj++1)/I'(z-j +1)]f,(z s)}

The factor I is given by

I"(n+ 1)I'(2o.,'+ 2+n) "' &I'(o.,'+j, + 1)I"(a,'-j, '+ 1)
I'(n-j+ 1)I"(2n„'+2+n-j) I'(n~'-j 0+ 1)l (n„'+jo'+ 1)—

where y= (jo-j,')j~j,-j, '~ =+ 1. The functions d jj.„jo'(p) are the representation coefficients for the ho-
mogeneous Lorentz group, "expressible for the case of interest as polynomials in e . The hyperbol-
ic angle P, is given by coshP, =E,/m» sinhP, =

~ p, ~/m» where E, and p, are the center-of-mass energy
and momentum of particle 1 in the s channel. For the 3, 4 vertex, P, is replaced by P„coshP, =E,/ms,
sinhp, =~ p, ~/m, . The factors 7l, and q, give the intrinsic parities of particles 1 and 2. The functions

ai j .(s) are independent of the daughter number n, and may be different for the 1, 2 and 3, 4 vertices.
Proper behavior of the helicity amplitudes at s =0 is assured if these functions are analytic in the
neighborhood of that point. The asymmetry in the treatment of particle 1 (or 3) relative to particle 2

(or 4) in Eq. (5) is only apparent. By appropriate rearrangements of the d function, and redefinition
of the a' s, Eq. (5) can be brought into an equivalent form with P, (P,) replaced by P, (P~).

Equation (5) summarizes all the constraints on the residue functions at s = 0 and the pseudothresholds
which follow from the conditions imposed by analyticity and factorization. The interpretation of the
equation is similar to that of Eq. (2): The actual residue functions are the quantities of dynamical in-
terest (residues of the partial-wave S matrix at the Regge poles). The functions aj, .(s) have no di-
rect dynamical significance, but are determined by Eqs. (5). We may nevertheless use these equations
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to parametrize the Regge residue functions near s =0. Care must be taken, however, to adjust the a' s
to eliminate any spurious singularities introduced by the factor (1-g, ') "', and to enforce the proper
behavior of the residue functions at nonsense points. '

The results for the trajectory and residue functions given in Eqs. (2), (4), and (5) have several im-
portant features:

(1) The behavior of the residue and trajectory functions near s = 0 is determined, as expected, by the
value of j,. The form of the e's is otherwise independent of the nature of the coupling to the external
particles. Information on the couplings appears only in the P's. Explicit expressions for the helicity
amplitudes for small s will be given elsewhere. "

(2) The expression for the P's in Eq. (5) is valid for all mass configurations (mass analyticity) and

all values of S, A. , and j,. Note that the sum over j,' in Eq. (5) is present: even for the leading trajecto-
ries, n = 0. The P's contain precisely the number of free parameters at s = 0 that is expected from dis-
cussions which treat the equal-equal, equal-unequal, and unequal-unequal mass configurations sepa-
rately. 4

(3) In the special case of equal external masses, m, =m, and m, =m„and zero total energy, s = 0, the
Lorentz group is a symmetry group of the scattering amplitude. As expected, only the single term in

Eq. (5) which corresponds to the irreducible representation of the Lorentz group characterized by the
parameters o'= o.(0)+ 1 and j, survives in this limit.

(4) For general external masses, or s c 0, the trajectory and residue functions display an intrinsic
mixing of different irreducible representations of the homogeneous Lorentz group. The set of Regge
poles n, ', n = 0, 1, ~, cannot be identified at nonzero values of s with a single pole in a Lorentz am-
plitude labeled by parameters jo and 0, as has sometimes been proposed. This identification would

require that the trajectories be strictly parallel, o.' '(j„s)= a(s)-n-l, and that the sum over jc' in Eq.
(5) be limited to the single term with j,'=jo. We note first that the trajectories cannot be parallel (ana-
lyticity and unitarity). Second, the sum over j, is necessary if one is to obtain the most general be-
havior of the residue functions at s =0 and at the pseudothresholds. Because of this sum, the dominant
behavior of a residue function of a particle pole may correspond to a value of jo different from that
which characterizes its behavior at s = 0 [e.g. , the residue of a pion pole classified by jc= 1 at s =0
could behave as a j,=0 residue at the pion mass, a„= 0]. The expressions in Eqs. (2) and (5) may be
interpreted from the group theoretical point of view' as including the terms which break the equal-
mass s =0 Lorentz symmetry to all orders in perturbation theory.

Applications of these results to high energy scattering will be discussed elsewhere. "
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An explicit example of crossing-symmetric Regge-behaved amplitudes is constructed
for nonlinear trajectories. The Regge behavior is proved for Ret-+~, except on the
real axis, as well as for Ret- -~.

In this Letter we present an explicit example
of crossing-symmetric, Regge-behaved ampli-
tudes (so-called Veneziano representation') for
nonlinear trajectories. It is given in the form of
an integral representation involving parameters
associated wtih Regge trajectories. Both Regge
asymptotic behavior and fixed-u behavior are
proved along any direction on the complex plane
except on the real axis.

Let us first construct an amplitude having poles
at desirable locations with residues of the cor-
rect angular dependence, that is, an amplitude
in which (i) poles should be located at a(s) and
a(t) =n, where n is a non-negative integer, and
(ii) the residue at n(s) =n [or a(t) =n] should be
an nth polynomial of f (or s), barring ancestors.
It is easily seen that the following integral repre-

sentation meets these two conditions:

( ( ) (t) ) I d c((s) 1 + zlR(s)f (z)
j 0

i -0.'(t)-1+ Aa(t)f (1-z)

where 0. is a Regge trajectory which obeys a dis-
per sion relation'

s I', Ima(s')
n (s) = as + b + — ds ' .. .7t' S (S -S)

and 40. is the deviation of n from a linear trajec-
tory, for which we assume in our representation

lim b,a(s)/s =0.

The function f(s) is to satisfy the following im-

205


