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ANISOTROPY IN THE KONDO EFFECT OCCURRING IN Zn-Mn SINGLE CRYSTALS*
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Studies of the low-temperature resistivity of single crystals of pure Zn and pure Zn
doped with a small quantity of Mn (64 ppm) indicate that the anisotropy of the band struc-
ture is not sufficient to explain the observed anisotropy in the Kondo effect occurring in
the Zn-Mn system, and that a small anisotropy in the +-d exchange constant is required.

Miwa and Nagaoka' have pointed out the impor-
tance of studying the effect of an anisotropic ex-
change interaction in the Kondo effect. These
authors predict that for the case of an axially
symmetric crystal there should be two principal
values of the exchange constant J, and J~~, where
the subscripts refer to directions perpendicular
and parallel to the axis of axial symmetry. Naga-
sawa' in some recent experiments on the de Haas-
van Alphen effect in Zn-Mn alloys suggests that
the apparent anisotropy in the Dingle temperature
may result from an anisotropy in the exchange
scattering. %e wish to report measurements on
the low-temperature resistivity of single crystals
of Zn and Zn-Mn measured parallel and perpen-
dicular to the c axis. The Zn and Zn-Mn crystals
were grown by the Bridgman technique from
99.999Vo pure zinc and an alloy made from the
same pure-zinc stock but containing 64 ppm. Mn.
After growth, samples were cleaved from each
end of the crystal and the resistance ratio mea-
sured to determine the concentration gradient.
A homogenizing anneal was given at 400'C until
the concentration gradient was less than 1 ppm
over the length of the 2-cm crystal. The 64-ppm
concentration of Mn in the Zn-Mn crystal was de-
termined by resistance-ratio measurements us-
ing the published data."Resistance measure-
ments on pure Zn and the Zn-Mn alloy were made
on two crystals spark cut from each ingot. The
current leads were attached with 50-50 Pb-Sn
solder such that the current flow was in one case
parallel to, and in the other case perpendicular
to, the c axis of the crystal. On using currents
of 1-10 mA the resulting voltages were of the or-
er of &0-xi V for the pure zinc crystals and 1O-zo

V for the Zn-Mn crystals. The voltages were
measured using a superconducting Josephson de-
vice or superconducting, low-impedance, undula-
tory galvanometer similar to that described by
Mcshane, Neighbor, and Newbower. '

Shown in Figs. 1(a) and 1(b) are the two com-
ponents of resistivity as a function of tempera-
ture for pure zinc and for the Zn-Mn alloy, re-

spectively. The value of p, /p~~ for the pure zinc
crystal is 0.96 which is in good agreement with
the estimated value 0.97 reported by Aleksandrov
and D'Yakov. ' The solid lines shown in Fig. 1(b)
are a least-squares fit to the data and yield

(Bp/B lnT),
( / )

=1 13+008.
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FIG. 1. (a) Temperature variation of resistivity of
pure zinc parallel (closed triangles) and perpendicular
(closed eireles) to the c axis. Because of mechanical
damage done to the crystal upon thermal cycling the
measurements parallel to the c axis were not continued
below 4.2 K. (b) Temperature variation of resistivity
of the Zn-Mn alloy (64 ppm) parallel (closed triangles)
and perpendicular (closed circles) to the c axis.
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(Bp/8 lnT) =cKm*J'[N(0)J]. (2)

At the present time s-d conduction-electron
scattering has not been generalized to include a
nonspherical Fermi surface; so no theoretical
expression exists describing the anisotropy in the
anticipated logarithmic divergence in the resis-
tivity. Intuitively one could suggest that Eqs. (1)
and (2) could be generalized by defining a J,'',
Jff', [N(0)J], and [N(0)J'] ff. We would then have
from Eq. (2)

alloy can be written7 as

p(T) = pl + cpz+ cÃm*J'[A +N(0)J lnT], (1)

where pz is the host lattice resistivity; cd re-
sults from Coulomb scattering due to the pres-
ence of the paramagnetic impurity; c is the con-
centration of paramagnetic impurity; K is a pro-
portionality constant involving atomic volume,
Fermi energy, etc. , which will b'e a constant for
any particular solvent; A = [1-JN(0) ln0. 77D],
where D is the conduction-electron bandwidth of
the solvent; J is the s-d exchange parameter;
N(0) is the density of states per atom for one di-
rection of spin at the Fermi energy; m* is the ap-
propriate effective mass; and T is the tempera-
ture in 'K

Assuming that at temperatures below 5 K pL

and pz are independent of temperature, then upon
differentiating Eq. (1) with respect to lnT we ob-
tain

Jff using the above value of mi*/mff*. We find

&i/Jff = 1.08+ 0.04.

Further, from Eq. (3) we notice that

[N(0)J], (Bp/8 lnT), ~J
' mff+

[N(0)J]ll (Bp/8 nT)fl

Solving for the right-hand side of Eq. (5) we find
it equal to 0.99+0.05. From this we can conclude
that within the experimental error N(0)J is a con-
stant, and hence any parameter involving this
product, viz. , the Kondo temperature, will be
isotropic.

If we assume, as suggested by Kondo, that the
Coulomb and spin scattering are equal, then solv-
ing Eq. (1) for J using an average value for the
slope of Bp/8 lnT and for p(1'K) appropriate for
a polycrystalline sample' we obtain J= -0.23 eV.

In the absence of a theoretical extension of the
Kondo theory to include nonspherical Fermi sur-
faces, we have improvised a semiphenomenolog-
ical expression, from which we suggest that the
anisotropy of the band structure is not sufficient
to explain the observed anisotropy in the Kondo
effect occurring in the Zn-Mn system and that a
small anisotropy in the s-d exchange constant is
indicated.

The authors wish to acknowledge numerous
helpful discussions with their colleagues and, in
particular, with Professor J. R. Schrieffer, Pro-
fessor W. B. Muir, Mr. Paton, and Mr. Li.

(Bp/8 inT), m, * J, ' [N(0)J],
(Bp/8 lnT)ff mff* Jff [N(0)J]

ff

(3)

Assuming a parabolic band we suggest a fur-
ther extension of the above assumptions, i.e.,
[N(0)J]~nJi(m i*)"a, so that

(Bp/p lnT), (Z, )*(m,
"
)
"'

(4)

Assuming an isotropic relaxation time and a
single-band effective-mass approximation for the
resistivity of pure zinc the value of mi*/mff* is
given by

(m, */mff*)„„,=(p,/pff )„„,=0.96.

Assuming that the effective masses are unchanged
in the 64-ppm alloy Eq. (4) can be solved for Ji/
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