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PHOTOEMISSION PROPERTIES OF CESIATED COPPER*

Neville V. Smith
Bell Telephone Laboratories, Murray Hill, New Jersey 07974

(Received 6 October 1969)

New measurements of the photoelectron energy distributions from cesiated Cu reveal
structure not seen in previous data. The behavior of this new structure on varying the
photon energy is characteristic of direct transitions. Theoretical calculations are pre-
sented which lend support to this conclusion.

An outstanding landmark in the photoemission
investigation of metals was the observation of the
d bands in Cu and Ag by Berglund and Spicer. '
They found, however, that their results could not
be reconciled with conventional theory of direct
transitions. New measurements on Cu are re-
ported here which indicate that some of these dif-
ficulties may be experimental in origin.

The failure of direct transitions appeared to
lie in the behavior of structure in the photoelec-
tron energy-distribution curves (EDC's) on vary-
ing the photon ener gy, S~. Structure was found
to remain stationary or to move in energy with
increments equal to the increments in Lo. Di-
rect transitions, it was argued, should give rise
to structure which moves in a peculiar way on
varying @co; in addition, peaks in the EDC might
be expected to vary markedly in strength and to
disappear and reappear in a rather abrupt fash-
ion because of the gaps between the bands. Cal-
culations on Cu, however, ' have indicated that
the equal-increment behavior is not inconsistent
with direct transitions, at least for clean Cu in
the range S~ ~11 eV. The same calculations in-
dicated that the characteristic behavior peculiar
to direct transitions was expected to occur at
energies below the vacuum level of clean Cu. In
other words, it is necessary to lower the work
function, for example by cesiation, in order to
see these effects. This was the motivation which
led to the experimental reinvestigation of photo-
emission from cesiated Cu described here. Since
sample preparation and vacuum techniques had
improved over the intervening years, there was

hope that it might be possible to resolve clearer
structure than had been seen in the previous data
of Berglund and Spicer. '

The Cu sample used in these new measurements
was prepared by evaporation in a stainless-steel
ultrahigh-vacuum system. The pressure rose to
5~ 10 "Torr during the evaporation but dropped
quickly to 1.5~10 "Torr afterwards. The sam-
ple was then covered with a thin layer of cesium
in order to lower the work function. The pres-
sure did not rise above 2&10 ' Torr during the
cesiation. Berglund and Spicer used cesiated
samples prepared in a glass system in which
pressures somewhat lower than 10 ' Torr could
be attained. Our new results differ in some re-
spects from those of Her glund and Spicer. The
origin of the differences is not clear, although it
is presumably associated with the overall vacuum
conditions or the details of the cesiation. The
role of Cs on the surface, or any surface con-
taminant for that matter, is very imperfectly un-
derstood. Also the general improvement in sam-
ple preparation technique over the last few years
has been accompanied by an improvement in
photoemission data, the work on nickel' being a
good example.

The new and most noteworthy information has
been obtained in the photon energy range 6.5 to
8.2 eV, and so we will concentrate our discussion
on this region. The EDC's of photoemitted elec-
trons are shown in Fig. 1 for photon energies be-
tween 6.5 and 8.2 eV. The horizontal scales have
been shifted so that each curve is plotted against
E-S~+ep, where E is the electron kinetic ener-
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INTENSITY DISTRIBUTION IN THE SIDEBAND SPECTRUM OF NO3 IN KI
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The 1400-cm absorption band of the nitrate impurity in potassium iodide shows at
4.2'K a considerable amount of fine structure. The intensity distribution of this fine
structure is governed by the anharmonic coupling of the internal vibration of the nitrate
ion with nearly unperturbed phonons. This distribution can be calculated satisfactorily
by first-order perturbation theory.

It is known that the intensity distribution in
sideband spectra must contain information about
interactions in crystals. Therefore it is impor-
tant to look for the weight factor that determines
the contributions of the combinations to the total
absorption. Thus far, consideration to this
weight factor has only been given for the side-
band spectra of an electronic transition' and of
the absorption due to U centers. ' The lack of de-
tails in the reported" sideband spectra of inter-
nal vibrations of complex ions in solid solutions
made consideration of a weight factor inoppor-
tune.

We present here high-resolution spectra of the
sideband absorption of the v, internal vibration
of the nitrate ion as an impurity in potassium io-
dide recorded at 4.2 K. The spectra show enough
details to allow a comparison with a simple theo-
ry describing the coupling between internal vi-
bration and lattice phonons.

Single crystals of KI doped with nitrate were
grown from the molten salt. The length of the
crystals used in our experiments was about 15
mm, with nitrate concentrations in the range of
10"to 10" cm '. Figure 1 shows the infrared
absorption spectrum of such a crystal in the
1400-cm region obtained with a Perkin-Elmer
E14 spectrometer, resolution=0. 2 cm '. For
the consideration of the interaction between in-

ternal vibration and undisturbed phonon spec-
trum some features of the experimental spec-
trum have to be disregarded. In the first place
there is a relatively strong absorption peak with
some very sharp sidebands at about 1423 cm
that arises from an overtone of the v, vibration
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FIG. 1. The sideband spectrum of the v3 internal vi-
bration of NO3 in a KI single crystal.
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