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We solve the Hubbard model, for one electron per atom in a simple cubic structure,
using one-particle Green's functions. We determine the accuracy of this calculation to
be good by comparison with an exact solution by Lieb and Wu of a one-dimensional lim-
iting case. When the Coulomb interaction U exceeds about 0.27 of the bandwidth in three
dimensions we find there are two critical temperatures: TN, the Noel order-disorder
transition temperature (~U ~ at large U) and a higher critical temperature T~, at
which the atoms lose all vestige of localized moments and at which the insulator-metal
transition occurs (TM o- U at large U). For U less than 0.27 of the bandwidth only TM
exists.

We report on extensive calculations of a Green's-
function solution to the Hubbard model' of inter-
acting electrons. To test the accuracy of our
present procedure we first compared the ground-
state energy for a one-dimensional model with
the exact results of Lieb and Wu' and were
pleased to find satisfactory agreement at all val-
ues of the coupling constant, becoming almost
exact agreement in the weak-coupling limit. Our
three-dimensional results agreed with the varia-
tional solutions of this problem given by des
Cloizeaux' and Penn. ' We also found confirma-
tion of remarks by one of us' and by Richmond'
concerning the staggered susceptibility of an in-
teracting electron gas, i.e. , that an incipient
divergence in the low-temperature susceptibility
is related to a metal-insulator "Mott transition. "
The Green's-function method has the advantage,
of course, that in a subsequent approximation it
yields quasiparticle lifetimes, collective modes,
etc. But already at the initial stage of approxi-
mation we have found a result with immediate ex-
perimental consequences.

This new result concerns the existence of two
critical temperatures. A material which is mag-
netic at low temperature will magnetically disor-
der at a "critical temperature" T, (TN for an
antiferromagnet) and will lose its atomic mo-
ments entirely at a second critical temperature
T~. We find that in weak coupling TM can be be-
low T ~, hence just below the temperature at
which the local spins disappear (at which point
the material makes a phase transformation to an
ordinary Pauli-paramagnetic electron gas) there
is hardly any magnetic disorder. In that case
there is no order-disorder phase transformation

and only the disappearance of the magnetism at
the critical temperature T~ will be observed.
But once the Coulomb interaction parameter U

exceeds about one third of the bandwidth, we find
that T, drops below TM and for very large U, T,
becomes small (~U ') while TM becomes large
(~U), and the Heisenberg model of magnetism'
once more becomes conceptually applicable. So
for a large class of intermediate-coupling mate-
rials, two critical temperatures with their cor-
responding specific-heat anomalies, critical
fluctuation, etc. should be experimentally ob-
servable, in a large variety of intermetallic
transition-series alloys and oxides.

We support these conclusions with a calculation
on the Hubbard model, assuming a simple-cubic
lattice and a band structure based on the tight-
binding scheme, with one electron per atom. It
has often been remarked' ' that this specifies a
situation which is incipiently unstable against
antiferromagnetism and that the antiferromagnet-
ic state which one obtains in this model is char-
acterized by an energy gap which turns the model
into an insulator at low temperautres. Above a
temperature &~ the gap disappears and the prop-
erties are those of an interacting paramagnetic
electron gas, i.e., there is no local moment.
Below T~ on each atom there is a finite spin po-
larization, the magnitude of which depends on the
temperature (as is discussed below and shown in
the figures). The calculation of TM in our model
is easy enough; it is the temperature at which an
energy gap vanishes and the Mott transition oc-
curs, and is of course characterized experimen-
tally by a jump in electrical conductivity. We
estimate ~N by the molecular-field approxima-
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tion, which should be reasonably accurate. The reason is that in strong coupling the results are pat-
ently correct, and that in weak coupling the effective forces become weak but very long ranged, which
is precisely the limit in which molecular field theory is presumed to be exact. ' We hope subsequently
to give detailed confirmation of these statements by evaluating the temperature-dependent magnon dis-
persion relation &'q =D(T)q and the spin-spin correlation functions, all of which can be obtained from
the two-particle Green's functions. We have already started the somewhat more elaborate calculation
of these Green's functions and have obtained the magnetic susceptibility y(0) and the staggered mag-
netic susceptibility y(Q) as a function of the temperature.

Because of the anticipated antiferromagnetism we introduce ab initio two sublattices, A and B, and

write the Hamiltonian which describes our many-body system as

H = —Q Q Tgj(CJ) Cjt+Cji Cgi+Cg) CJ)+CJ) C;))+Upgoing)-pQg(ngi+ng)),
i &A j&B

where the sum on i, j is over nearest neighbors in a simple-cubic structure and C&, , Ci are the crea-
tion and annihilation operators for an electron of spin a at site i. T;J is the kinetic energy in the band

and U is the Coulomb repulsion between the particles on the same site. The chemical potential, p,
has been introduced to conserve the number of particles.

Let

~=&n;) )=&ngg }; y=&n;) )=&nazi }.A B . A B (2)

This allows for a possible antiferromagnetic ordering on sublattices A. and B. We assume translation-
al invariance within each sublattice. The parameters y and a measure the magnitude of the atomic
moment. We solve for the double-time Zubarev' single-particle Green's function ((C;~; CJ}}=G(C;~CJ}.
The equation of motion for G(C;tt CJi") -=Gii " is

uG"" =—((C; i~", Cji")}+(([Cqt,H]; CJ"}}

or

(~-~)G = —c»+ QriqG -U((n;& Cji, cjoy }}.AA BA A A. A

qgB
(4)

To find a solution we make the simplest possible decoupling for the two-particle Green's function,

((n,"C,-i'; C,}}-(n,."}((C,';CJ}}, (6)

so that (4) becomes

( U)GAA li g T GHA
27T q ~B

Fourier transforming (6) and writing out the other one-particle Green's functions we have

(6)

((v-p+yU)G (k,k2) T(k,-)G "(k,k2) = 5k, g, (&u-p+o.'U)G (k,k2)-T(k, )G (k,k,) =0,

((u-p+ o.U) G (k~k2)-T(k, ) G (k,k2) = 5g, k, ((u-p+yU) G (k,k2)-T(k, )G (k,k2) = 0, (7)

where T(k) =+T,(cosk~+ cosh&+cosk~) for the simple cubic lattice and where we take T, = —,
' correspond-

ing to a bandwidth of three. Solving (7) we find

where

4~ Z(k)
1 1

y-p+Uy/2-E(k) ~- p, +Uy/2+E(k) '

U2~2 1/2
&(k)= +T'(k), x=a-y; y=o. +y.
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The correlation functions (CtC) may be obtained from the Green's functions':

(Cl, Cl, ) = +E(k) f —E(k)-u, ——-E(k) f —+E(k) E-),
A I Ux Uy Ux

'

Uy

2E(k) 2 2 2 2

where f(x) = [I+e ]
' and P=1/kT.

The results for (C» & C» ~ ) are obtained from (9) letting x - -x. Similarly

(C „it"C „i ) = T(k)f ——E(k) —p —T(k)f —+E(k)—p2E(k) 2 2
(10)

We will evaluate our equations for a half-filled band where y = n+y = 1. (Penn calculated his results
for various electron concentrations. )

To find x and p we use

g-„(c-„"c-.„"&=n~, g-„(c-„'"c-„"&=my.

The sum extends over the Briliouin zone of a sublattice (the sublattices are fcc lattices) and n is the
number of particles in A. .

Our self-consistency conditions are

U1=—g f —-E(k)—p +f —+E(k)-p, I,n 2 2
(12a)

U x U - Uf —.(.)-. —.-"(.)-.)2n E(k) 2. 2
(12b)

From (12a) p has the solution U/2. This result
has also been proved as a rigorous theorem.
It remains to solve for x from (12b):

x =— tanh
x U PE(k) (13)

2n Ek
»

Knowing x as a function of U, T„,P enables us to
find the internal energy (H):

(H) = —2/n Q» &(k)(C»t"C» ) + U/4(1-x'). (l4)

From (10)

exact at small U and good even at relatively
large U=2T, .

In Fig. 2 we show the variation of the size of
the local moment in three dimensions as a func-
tion of 2T, /U and U/AT. At zero temperature
there is always a nonzero local moment and as
the temperature is raised this moment gradually
disappears and the system undergoes a phase

—0.7

(H)&F = ——g —tanh -+—(1-x'). (15}
1 & (k) PE(k) U

n Ek
k

When the only solution of (13) is x=0 the system
becomes paramagnetic with internal energy

1 . - P
(H), = —g &(k) tanh —r(k) +—.' 8 2 4

k

These results are independent of dimensional-
ity. In one dimension we compare the ground-
state energy given by (15}with the exact result
of Lieb and Wu, which is

-0.6

-0.5

-0.4

~ -oa

—0.2

To = 0.5

1 1 Jc(u))J,((u)E =E —,—,U = 4iV d(k) —
1

(, ~), (17)

where Jo and ~, are Bessel functions.
The comparison of our energies with the exact

results is shown in Fig. 1. The agreement is

10.0
0.0 1

0.1 l.0
U

FIG. j.. Comparison of approximate ground-state en-
ergy in one dimension to the exact result of Lich and
Wu.
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FIG. 2. A plot of the three-dimensional solution for
the local moment: (a) as a function of temperature for
various ratios B—= 2To/U, (b) as a function of B for
various fixed values of the temperature.

I.O

transition at a temperature T~.
From (13) we find the following equation for the

critical temperature T~.

ZJ 2 IEg-ED I

4 x
(20)

In Fig. 3 we have plotted the curves kT~(U) and

kT~(U) against U. At a critical U, =0.8 the

U ~ tanhT(k)/2kT~
2n ~ T(k)

k

This is precisely Richmond's equation' obtained

by him on the basis of summation of an infinite
set of polarization diagrams.

In the antiferromagnetic state we also have
spin waves which can cause an order-disorder
transition. If we suppose a Heisenberg antiferro-
magnetic Hamiltonian we may estimate the
strength of the spin-spin interaction by

ZN——,Z&, &S;~ S,&
= IE.-E, I =,ij

where &~ and &~ are the zero-temperature en-
ergies in the antiferromagnetic and paramagnetic
states, and where Z is the number of nearest
neighbors. A simple molecular-field-theory cal-
culation for the Heisenberg spin- —, antiferromag-
net gives

IQ—
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FIG. 3. (a) The order-disorder transition tempera-
ture && and the insulator-metal transition tempera-
ture T~ as a function of U. (b) Plot of y as a function
of temperature for U= 0 and U= 0,5.

curves cross each other. An exact calculation
might show the two curves merging rather than
eros sing.

We have calculated the static magnetic suscep-
tibility )t' = (&m/&h)j, , from the one-particle
Green's functions and find the form

(P/4n)g„sech' ,'PE(k)-
1-(PU/4n)QI, sech' —,'PE(k) '

We have plotted X as a function of temperature
in Fig. 3(b) for U=0 and U= —,'. The gap in the
energy spectrum causes y to drop sharply to
zero near T = 0. %hen U=0, however, y goes to
a finite value at T = 0. X has a wide peak for any
finite U in the region of the critical temperature
~M
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PHOTOEMISSION PROPERTIES OF CESIATED COPPER*
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New measurements of the photoelectron energy distributions from cesiated Cu reveal
structure not seen in previous data. The behavior of this new structure on varying the
photon energy is characteristic of direct transitions. Theoretical calculations are pre-
sented which lend support to this conclusion.

An outstanding landmark in the photoemission
investigation of metals was the observation of the
d bands in Cu and Ag by Berglund and Spicer. '
They found, however, that their results could not
be reconciled with conventional theory of direct
transitions. New measurements on Cu are re-
ported here which indicate that some of these dif-
ficulties may be experimental in origin.

The failure of direct transitions appeared to
lie in the behavior of structure in the photoelec-
tron energy-distribution curves (EDC's) on vary-
ing the photon ener gy, S~. Structure was found
to remain stationary or to move in energy with
increments equal to the increments in Lo. Di-
rect transitions, it was argued, should give rise
to structure which moves in a peculiar way on
varying @co; in addition, peaks in the EDC might
be expected to vary markedly in strength and to
disappear and reappear in a rather abrupt fash-
ion because of the gaps between the bands. Cal-
culations on Cu, however, ' have indicated that
the equal-increment behavior is not inconsistent
with direct transitions, at least for clean Cu in
the range S~ ~11 eV. The same calculations in-
dicated that the characteristic behavior peculiar
to direct transitions was expected to occur at
energies below the vacuum level of clean Cu. In
other words, it is necessary to lower the work
function, for example by cesiation, in order to
see these effects. This was the motivation which
led to the experimental reinvestigation of photo-
emission from cesiated Cu described here. Since
sample preparation and vacuum techniques had
improved over the intervening years, there was

hope that it might be possible to resolve clearer
structure than had been seen in the previous data
of Berglund and Spicer. '

The Cu sample used in these new measurements
was prepared by evaporation in a stainless-steel
ultrahigh-vacuum system. The pressure rose to
5~ 10 "Torr during the evaporation but dropped
quickly to 1.5~10 "Torr afterwards. The sam-
ple was then covered with a thin layer of cesium
in order to lower the work function. The pres-
sure did not rise above 2&10 ' Torr during the
cesiation. Berglund and Spicer used cesiated
samples prepared in a glass system in which
pressures somewhat lower than 10 ' Torr could
be attained. Our new results differ in some re-
spects from those of Her glund and Spicer. The
origin of the differences is not clear, although it
is presumably associated with the overall vacuum
conditions or the details of the cesiation. The
role of Cs on the surface, or any surface con-
taminant for that matter, is very imperfectly un-
derstood. Also the general improvement in sam-
ple preparation technique over the last few years
has been accompanied by an improvement in
photoemission data, the work on nickel' being a
good example.

The new and most noteworthy information has
been obtained in the photon energy range 6.5 to
8.2 eV, and so we will concentrate our discussion
on this region. The EDC's of photoemitted elec-
trons are shown in Fig. 1 for photon energies be-
tween 6.5 and 8.2 eV. The horizontal scales have
been shifted so that each curve is plotted against
E-S~+ep, where E is the electron kinetic ener-


