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preliminary study. A falloff in modulated emis-
sion intensity, expected when &f7, ~ 1, was ob-
served to occur at hf -2 MHz on the 4200.7-A

line, in agreement with calculated lifetimes.
This suggests that our technique may provide a
simple way to measure lifetimes of optical or
other transiiions. In addition, since emission
from ionic states should exhibit modulation in

proportion to the ion density, identification of
the electron and ion components of plasma oscil-.lations could be possible. Finally, we wish to
point out that the method may also be useful in
overcoming "lifetime" limitations of other kinds,
such as recombination radiation in solids.

Thanks are due to P. J. Casale, E. W. Koch,
and R. R. Reeves for technical assistance with
the experiments.

tG. J. Morris, Phys. Rev. Letters 18, 734 (1967);
M, Baranger and B. Mozer, Phys. Rev. 123, 25 (1961);

H. J. Kunze and H. R. Griem, Phys. Rev. Letters 21,
1048 (1968); W. S. Cooper, III, and H. Ringler, Phys.
Rev. 179, 226 (1969).

H. R. Griem, Plasma Spectroscopy (McGraw-Hill
Book Company, Inc. , New York, 1964), pp. 363-441,
lists oscillator strengths (inversely proportional to v'e)

for a large number of atoms and ions. Argon I transi-
tion probabilities for the lines observed here can be
found in P. K. Johnston, Proc. Phys. Soc. (London) 92,
896 (1967).

3R. A. Stern, Phys. Rev. Letters 14, 538 (1965).
4P. Vandenplas, Electron Waves and Resonances in

Bounded Plasmas (John Wiley @ Sons, New York, 1968).
5R. W. Huggins and M. Raether, Phys. Rev. Letters

17, 745 (1967).
GD. R. Whitehouse, thesis, Massachusetts Institute

of Technology, 1958 (unpublished); S. Torv6n, Arkiv
Fysik 29, 533 (1965). Note that a linear dependence is
convenient but not necessary for a useful optical diag-
nostic of plasma oscillations.

VI. B. Bernstein, Phys. Rev. 109, 10 (1958); S. J.
Buchsbaum and A. Hasegawa, Phys. Rev. Letters 12,
685 (1964), and Phys. Rev. 143, 303 (1966).

OPERATOR ALGEBRA AND THE DETERMINATION OF CRITICAL INDICES*

Leo P. Kadanoff
Department of Physics, Brown Vniversity, Providence, Rhode Island 02912

(Received 8 September 1969)

The "reduction hypothesis" proposes that a product of nearby fluctuating local vari-
ables can be replaced by a linear combination of individual local variables. The linear
combinations thereby produced are a kind of algebra of the reduction of products. A
particular algebra is proposed for the two-dimensional Ising model. It is shown that a
knowledge of which coefficients in the algebra are nonvanishing is sufficient to deter-
mine all critical indices.

The two-dimensional Ising model has a critical
behav'ior which can be described in terms of a
number of quasilocal fluctuating quantities such
as the magnetization o;; the energy density mi-
nus its critical value, which we write as e(r); a
traceless and symmetric stress density' t;J(r);
and a two-component fluctuating variable' ' b~(r)
which has rotational properties like a spinor.
The critical properties are defined by critical
indices. According to the scaling idea'' all criti-
cal indices would be determined if we knew a few
fundamental "scaling indices" which describe
how these fluctuating variables change under
transformations of the scale of length.

The Onsager' solution of the two-dimensional
Ising modeL provides us with a method of calcu-
lating these fundamental scaling indices. From
this solution, we learn that v; scales as r
e'(r) scales as r ', and b, scales' as x '". But,

to obtain these results, we must rely upon the de-
tailed calculations which grew from Onsager's
original inspiration. These calculations have the
drawback that they do not offer a very useful in-
sight into the physics. Furthermore, they do not
suggest any method of proceeding for other criti-
cal problems.

Only one fundamental index has been deter-
mined by a very direct method, the index for t;, .
Kawasaki has evaluated correlation functions in-
volving T;~ = fdr tq~ (r) by using the f.act that this
total stress tensor is conjugate to the strain.
This evaluation implies that T;, scales as H.
Then t;J will scale as x in a two-dimensional
system.

To determine all the other indices, we must try
a new tack. In this paper, we make use of a "re-
duction hypothesis"" which suggests that a prod-
uct of any two nearby fluctuating local quantities
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is expected to behave as a linear combination of
all the other local variables. " In symbols,

O„(r,)O&(r, ) = P&A „& &(r)O&(R),

r =r, r-„R=-,'(r, +r,), (1)

where the 0's are the fluctuating variables and
the A's are numbers which describe the structure
of their algebra. It is the basic contention of this
paper that a. knowledge of the nature of the alge-
bra, in particular which of the A's are nonvanish-
ing, is sufficient to determine the critical in-
dices.

To make this point in concrete fashion, I shall
write down a set of algebraic relations of the
form of Eq. (1) and then use them to determine

all critical indices. These relations have been
derived from a detailed calculation which wiLl be
published later —but their source is almost irrel-
evant to the main point, which is to show that re-
duction algebras can determine indices.

To write the algebra we use a basic set of vari-
ables D&(r), where y is a positive or negative
integer or half integer. We allow r, and r, to be
on the x axis with xy & x2 This algebra is basi-
cally the statement that as r, and r, approach one
another at the critical point, D~(r, )D&(r, ) is a
constant times D&(B*), where R* is some point
on the x axis in the neighborhood of r, and r, and

y= ~+ (-1)"P.

More precisely, if y0,

(3b)

D (r,)D&(r, ) =A«(r)D&(R)+B„z(r)D&'(R)+higher order in r, D '(R) =&D (R)/8X. (3a)

The D term represents the possibility of a displacement of R* from R. Since Do(R) is the unit opera-
tor, the case &=0 is somewhat special. In this case, D&' vanishes and, instead,

D~(r, )DB(r,) =A~ z(v)D, (R)+8 8(r)e(R)+ C~ &(r)t»(R)+higher order in r
The detailed calculation also provides physical

identifications of the D . The first three are weakly fluctuating and we may take

Dp —
&& Dj/2 vr y

D y/2
—pr (4) D =Ofor [y[&2 (4d)

D+,(r) =a+(r); D, (r) =a (r). (4b)

The detailed calculation also finds D, 3/2 as
derivatives of Dz y/2 in particular,

D,...(r) = +~(e/&y)D„„(r), (4c)

where c is a constant. We defer the discussion
of D, 2 for a moment. For ~y~ & 2, D& is rather

Here ILL~ is a variable which has not been used up
to now in most Ising-model studies. In the nota-
tion of Ref. 5, p, j q=W2bj ~vj &,. It turns out
that p, ~ is the transform of a; under the Kramers-
Wannier" transformation. This transformation
interchanges the regions T & T, and T & T, and it
represents an exact symmetry of the two-dimen-
sional Ising model. Therefore p~ has for T & T,
all the properties that o-, has for T & T„and
vice versa. Since the critical indices are the
same above and below T„p.;, and o; scale as
the same power of ~. They are also both scalars
under rotation. Next D„ is identified by the ex-
act calculations as the particular linear combina-
tion of the usual' ' Ising-model spinor variables
which transform as spinor components with spin
in the +x direction. We write these special linear
combinations of b, and b as a„so that

D -D (5b)

for our present purposes.
The structure of the reduction algebra repre-

sented by Eqs. (2) and (3) can be partially under-
stood from the spinor identification of D„. Imag-
ine that we were in a three-dimensional system
with spherical symmetry rather than a two-di-
mensional one. Then the spinor components Dyy
would have angular-momentum quantum number

=+2. The algebra would be reasonable if D z
for integral y had J =-,'y. Then Eq. (2) would

simply reflect angular-momentum addition prop-
erties for multiplication of operators on the x
axis —at least for the case in which n and P were
both integral. Of course, we are not dealing with
a system with the fuLL rotational symm. etry of the
three-dimensional case. Nonetheless, apparent-
ly enough rotational symmetry remains so that
the combination rules of the Dz closely resemble
the algebra of operators with well-defined J .

Symmetry arguments provide additional infor-
mation about the coefficients A, B, ~ ~ ~ in the al-
gebra. Under x —-x,

D&-D&, where y'=-(-1)'&y, (5a)
while the combined application of the Kramers-
Wannier transform and also y- -y implies
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These exact symmetries, for fixed r, result in the following relations among the coefficients:

An, g A-n, -8 ~8', n'& n 8 -n -8 8' n'& n 8 —n -8 8' n'~

CG, 8=C „B=CB „. (8)

To find the x dependence of the coefficients, we consider the situation in which x is much greater than

a lattice constant so that scaling concepts are applicable. Then, if D„scales as r 'r and e scales"
as r ", the scaling idea implies'4

Clearly, my physical understanding of the algebraic rules is still very imperfect. Nonetheless, it is
possible to use these rules for the determination of all critical indices. The general scheme for this
analysis is a three-step process: (i) Use the rules for operators which do not involve B/By to find the
behavior of products on the x axis; (ii) from the known rotational properties of scalars, spinors, vec-
tors, and tensors, generalize the result to the case r,-r, arbitrary; and (iii) insist that the results
found in part (ii) remain consistent with the multiplication rules for D„,2 as they are defined in terms
of y derivatives. As a first example of this process consider:

(a) D„and the index for e(r).—When o. and P are both +2, we can write Eq. (3b) as

cr; o; = (w /r "» 2) [I + ur" ' ~(R) + vr ' t»(R) ],

where u, e, and se are constants. Because 0 and e are scalars and t» is a component of a second-rank
tensor, this result may be extended to arbitrary directions of r in the form

(8)

Next differentiate Eq. (8) with respect to y, (or y, ) and set y, =y, =0. Then Eq. (4c) implies

D», (r, )D„,(r, ) - —x'~ — + 2vrt»(R) -D,(R), D„,(r,)D», (r, )
— r'~ —— -2vxt»(R) -D, (R). (9)

There are three possibilities in the interpretation
of Eq. (9). If v, -1 &0, the Be/By term dominates
and D„-Be/By; if v, -1 & 0, the t» term domi-
nates and D,2-+t»(R); and, finally, if v, =1,
both terms contribute to D» and

D„(R)——, ~ 2vt„(R).
u Be(R)

But since the algebra implies that D, and D, be-
have differently, only the third possibility is
tenable; hence v, =1. This determination of the
index v, implies, via scaling, that the specific-
heat index e is equal to zero.

(b) Index for spinor variables. —The combina-
tion of operators

ls

c(B/By) [D „,(r,)D„,(r,)]
from Eq. (4c), and is therefore proportional to
Ba (R)/BF. From Eqs. (3a) and (7), it is also
proportional to Ba,(R)/BÃ. Thus,

[Ba,(r)/Bx]+g[Ba {r)/By] = 0,

where g is some constant. Application of the
same argument with opposite signs for all the
subscripts shows that the spinor

satisfies

(12)

where T, and T, are standard Pauli spin matrices.
Direct calculations' show that at T = T, the spin-
ors indeed satisfy a first-order differential equa-
tion of the form (12) in the scaling limit. Conse-
quently, the derivation of this equation can be
considered to be a confirmation of the power of
the algebraic method.

According to Eq. (3) the average of the product
of spinors a(r, )a (r, ) is 7',h/x '~, where h is a
constant and v, is the scaling index for a. By us-
ing the rotational properties of real spinors, we
can generalize this result to arbitrary r,-r, as

1432
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But (12) and (13) can only be consistent in two
1 1cases: g=l, v]:2 or g=-l, v, =-2. Since a,

are bounded, the latter is impossible and we find
tha. t

(c) Index for o.—When r, and r, are on the x
axis, Eqs. (3) and (7) imply that, in leading or-
der,

o(r, )p, (r, )
- „„a,(R),

where v]/2 is the scaling index of both p. and 0.
The generalization of this result to arbitrary
positions is

a(r, ) p(r2) -r'~ 2'«2[cos(6/2)a+(R)

-sin(()/2)a (R) j, (14)

where 0 is the angle between r and the x axis. By
taking B'/By, By, on Eq. (14) and setting y, -y, =0,
we construct D», (r, )D,&,(r 2)

-D, (R) = 0. There-
fore the leading term must vanish and

82
[r'~ "~&2cos(e/2)](, , =0,

which is only possible if v, -2v„, = 4 so that v„,
Since this is the correct value for the scal-

ing index of the magnetization, we now have
found all critical indices by algebraic arguments
based upon reduction formulas.
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