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Finally, we would like to mention that one can
easily write down the analogs of Eqgs. (12) and
(13) in case of vector and axial vector mesons to
obtain

mg Z-mA12=mK»2—m 2 (14)

A p
G ,4=Ga,=Gg-=G . (15)

It is interesting to note that Eq. (14) leads to
mg ,~1200 MeV. Also, Eq. (15) is quite com-
patible with the Weinberg second sum-rule pre-
dictions for SW(2) symmetry.

Details of this work with more applications will
be published elsewhere.
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Proposals are made predicting the character of longitudinal-momentum distributions

in hadron collisions of extreme energies.

Of the total cross section for very high-energy
hadron collisions, perhaps 3 is elastic and 10%
of this is easily interpreted as diffraction disso-
ciation. The rest is inelastic. Collisions involv-
ing only a few outgoing particles have been care-
fully studied, but except for the aforementioned
elastic and diffractive phenomena they all fall off
(probably as a power of the energy at high ener-
gy). The constant part of the total inelastic cross
section cannot come from them. And we know
that at such energies, the majority of collisions
lead to a relatively large number of secondaries
(perhaps the multiplicity increases logarithmi-
cally with energy). These collisions have not
been studied extensively because, with the large
number of particles, so many quantities or com-
binations of quantities can be evaluated that one
does not know how to organize the material for
analysis and presentation.

It is the purpose of this paper to make sugges-
tions as to how these cross sections might be-
have so that significant quantities can be extract-
ed from data taken at different energies. These
suggestions arose in theoretical studies from
several directions and do not represent the re-
sult of consideration of any one model. They are

an extraction of those features which relativity
and quantum mechanics and some empirical facts®
imply almost independently of a model. I have
difficulty in writing this note because it is not in
the nature of a deductive paper, but is the result
of an induction. I am more sure of the conclu-
sions than of any single argument which suggest-
ed them to me for they have an internal consis-
tency which surprises me and exceeds the con-
sistency of my deductive arguments which hinted
at their existence.

Only the barest indications of the logical bases
of these suggestions will be indicated here. Per-
haps in a future publication I can be more de-
tailed.?

Supposing that transverse momenta are limited
in a way independent of the large z-component
momentum of each of the two oncoming particles
in the center-of-mass system (so s =2W?), an
analysis of field theory in the limit of very large
W suggests the appropriate variables to use for
the various outgoing particles in comparing ex-
periments at various values of W in the c.m. sys-
tem. They are the longitudinal momentum P, in
ratio to the total available W, i.e., x=P,/W, and
the transverse momenta € in absolute units.
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Differential cross sections for dx d*@ of the var-
ious outgoing particles will then have simple
properties as a function of W. Negative x means
particles with P, negative.

First we must distinguish exclusive and inclu-
sive experiments. In exclusive experiments, we
ask that certain particles, with given x and &, be
formed, and no others. An example is a two-
body charge-exchange reaction. A typical exclu-
sive reaction is

n

A +B*ZT>C1+;Df,
where A is to the right, B to the left, and C,, C,,
«e+, C, are definite particles with definite @’s
and x’s all moving to the right (x >0), whereas
the D, D,, *++, D, are moving to the left (x <0).
The cross section should then vary, for suffi-
ciently high W, as s>*(9 72 or (W?)2*(9) "2 where
a(?) is the « of the highest Regge trajectory ca-
pable of converting the quantum numbers of A in-
to those of the sum of the C’s, and ¢ is the trans-
verse momentum difference of A and the sum of
the C’s.

This is an evident expectation from Regge the-
ory and should be as approximately valid as that
theory is for two-body reactions. The additional
point here is the clarification of using the vari-
able x to compare experiments at various ener-
gies. If no unitary quantum number is required
to be exchanged, so the C group has the same
quantum numbers as A, this C group can rise
from A via diffraction dissociation and the cross
section should approach a constant ratio to the
elastic cross section at this value of ¢ (i.e., it
should be constant if the elastic cross section
is).

Next, an inclusive experiment is one in which
we look for special particles with x,  in the fi-
nal state but we allow anything else to be pro-
duced also. An example is a measurement of the
mean number of K *’s produced with given @,x in
a pp reaction. Such cross sections should ap-
proach a constant as W -,

How can these be reconciled? Why does the
cross section fall if, for example, in a two-body
reaction we must exchange 3-component of isoto-
pic spin? Because under such circumstances,
the current of 3-component isospin must suddenly
reverse from right moving to left moving. Thus
if any fields are connected to such currents as
sources, they would be expected to radiate (in a
manner analogous to bremsstrahlung). To be an
exclusive experiment (say, pure two-body), we
require that no such radiation occur, a condition
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becoming more and more difficult to satisfy as
the energy rises and the current reversal is
sharper.

This leads us to expect, in the majority of col-
lisions, many particles over a wide range of x,
but their characteristics for the smaller values
of x are easy to envision. By Lorentz transfor-
mation, the fields to be radiated are becoming
narrower and narrower in the z direction as W
rises. The energy in this field is therefore dis-
tributed in a 6 function in z. Fourier analyzed,
this means that the field energy is uniform in
momentum, dP,. Since each particle of mass u
carries energy E = (u?+P,2+Q?)Y? if we suppose
that the field energy is distributed among the
various kinds of particles in fixed ratios (inde-
pendent of energy W), we conclude that the mean
number of particles of any kind and of fixed @
is distributed as dP,/E for not too large x. That
is, the probability of finding, among all the emit-
ted particles, a particle of kind Z, transverse
momentum @, and mass 4; is of the form f}(Q,
P,/W)dP,d*Q/(u? + @ +P,*)'?, where f;(Q,x) is
ultimately independent of W and has a limit £ 4Q)
for small x. As W—c_ for any finite x, dP,/E
becomes dx/x, of course.

Because of this dx/x behavior, the mean total
number (or “multiplicity”) of any kind of particle
rises logarithmically with W. We need not de-
cide what are “primarily emitted units” and what
are secondaries arising from their decay, for
the results so far stated are in a form that does
not depend on that. If we imagine some primary
independently emitted units, however, their num-
ber # would also rise logarithmically with ener-
gy, and the probability that none of them would
be emitted might be e 7 (as suggested by a Pois-
son distribution) which would then fall as a power
of the energy, accounting for the Regge expres-
sions which we are supposing are valid for such
exclusive collisions.

We can extend this idea to other amplitudes
which involve a similar #. In particular, we find
that the probability that A + B —C + anything
should vary as (1-x 2% dx, where C is mov-
ing to the right with almost all the momentum of
A (that is, for 1-x¢ small). Here «(f) is the high-
est trajectory (excluding the Pomeran chukon)
which could carry off the quantum numbers (and
squared momentum transfer {) needed to change
A to C.

Thus the Regge trajectory function a({) appears
not only in an interaction (as s**72) but also in an
emission process, reminiscent of the close re-



VOLUME 23, NUMBER 24 PHYSICAL REVIEW LETTERS 15 DECEMBER 1969

lationship of virtual interaction and real emis- the others.
sion that Yukawa emphasized.

Finally, for those special reactions which are
partially exclusive, in which anything can be
emitted except that a hadron must be transferred
from the right-moving to the left-moving system 2For a somewhat more detailed description, see
(carrying its fermionic and half-integral spin R. P, Feynman, in Proceedings of the Third Topical
character) the cross section should vary as 1/s. Conference on High Energy Collisions of Hadrons, Sto-
Of this last conclusion, I am less sure than of ny Brook, N, Y., 1969 (to be published).

IThave taken the approximate existence of Regge poles,
the constant total cross sections, and the constant
transverse-momentum distributions as empirical facts.
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From gauge invariance and duality we obtain an exchange degeneracy between Ny and
N y contributions to pion photoproduction, which is exact for » =M? but approximate for
u~0, This may account for the absence of the wrong=-signature dip in backward photo-
production.

Recent data of Anderson et al.’ on backward photoproduction of charged pions clearly show the ab-
sence of any dip around u ~-0.15 GeV?, which is hard to understand on the basis of a simple N, -tra-
jectory exchange. Alternative explanations,? based on the assumption of a dominant isospin-3 exchange,
seem to be unsatisfactory on the basis of neutral-pion photoproduction data as well as vector-domi-
nance—model results.’ However, the above result can be understood in a baryon Regge-trajectory—ex-
change picture, if the N, and N, contributions here were approximately exchange degenerate, unlike
the case of 7N scattering.®

We shall see that the requirements of gauge invariance and duality indeed lead to such an approxi-
mate exchange degeneracy for the helicity-flip amplitudes, which seem to be the dominant ones. By
helicity flip we mean the amplitude with maximum «-channel helicity projection ¥ (A, ,, ;,, and A _, /2,3/2)"
Of the two independent linear combinations of such amplitudes only one couples to the N, (and Ny) tra-
jectory. This is the invariant amplitude* A,. The N, residue in A, is nonvanishing at the nucleon pole
u=M?, even though it is a sense-nonsense pole. This is the well-known gauge-invariance requirement
which has no analog in purely hadronic processes.

We construct the amplitudes A,° and A,”, corresponding to isospin $insandu channels, from the
two isovector photon amplitudes® 4,'*) and 4,(™). We have

A5 =3(A,-A)), (1)
A =34, +4,0). (2)
Now the N, and N, contributions to A,° are
(s® alu)=3/2_go alu) *3/2) (s“Y(") =3/2 4 poy(u) —3/2)
S~ b - 3
S sl P | A T P @

where b, (M?) is related to the gauge-invariant residue function
26, (M%) /ma’ =eg, 4)
e?/4r=1/1317, g%/4n =14, and a’'~1 GeV 2, (5)

Using the duality hypothesis, even in a semilocal sense, it is possible to separate the s- and ¢-chan-
nel resonance contributions to the imaginary part of the u-channel Regge exchange. We get

N%alu)-1/2 Noy(u)=1/2

— = ry 6

ba(u) aa(u)-é by(u) ay(u)_% Zl;su ( )
N%alu)=172 N&y(@) =12 Teg

- . 7

b o (1) aa(u)—é +b7(u) ay(u)—é u_Mz+Zj>Tj, (7
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