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tal problems imposed on the experiment proposed
here. The sensitivity of the apparatus in both
groups is about 10 rad. With minor modifica-
tions of the optics and the detecting system, and

replacing the reflecting mirror by a light trap,
both groups should have no difficulty in perform-
ing this experimental test. Since v ~ h and V,
o- 8, it may be difficult to observe 6, if h & 10'
V/cm. However, there is always a good chance
to measure 8„.Even for & =10' V/cm, e., =+3
&10 ' rad.

There have been some difficulties in acquiring
a good estimation for the 8 value of a laser beam
in a small region. ' If the result of this proposed
experiment turns out to be positive, the idea of
this experiment will have a practical meaning.
Further development of this apparatus may be
used as an instrument to map the electric field
in a laser beam. Undoubtedly, this is a crucial
experiment. If the result turns out to be nega-
tive, it may mean a disaster in the present con-
cept of classical fields, as all the calculations
are a consequence of classical electrodynamics.

The authors wishes to thank Professor Howard
A. Shugart for his valuable conversations and
Mrs. Carolyn Wuest for her very helpful assis-

tance.
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Continuity arguments for transitions between various subgroups of the chiral-symme-
try group are presented. Some interesting sum rules are obtained in this way.

Recent investigations have led to the suggestion that the physical manifestation of a chiral-invariant
Lagrangian lies in the existence of Goldstone bosons, degenerate vacua, and nonperturbative solutions.
In this note we utilize this idea within the framework of the Gell-Mann model studied more recently
by Gell-Mann, Oakes, and Renner (GMOR), ' and investigate the general properties of the two-point
functions. This approach leads in a natural manner to the introduction of many interesting subgroups
of the chiral-symmetry group for different possible values of the symmetry-breaking parameter. We
discuss the possibility of continuous transitions among different subgroups which leads to some inter-
esting mass formulas and relations between other physically relevant quantities in a nonperturbative
way. Especially, the relation obtained by GMOR for the symmetry-breaking parameter is reproduced
in this manner.

We start with the strong-interaction Hamiltonian density given by

11(x)=a,(x)+ e,S~o~(x)+ ~,S"&(x),

where H, (x) is assumed to be invariant under the chiral group W(3) =-U '(3)SU '(3), broken by the
scalar density terms. We assume" that the scalar density nonet S~'~(x) together with the nonet P~' (x)
(i =0, 1, , 8) transforms according to the (3, 3*)8 (3*,3) representation, satisfying the usual alge-
bra. '' These algebraic relations and the local generalization of the usual equations' of motion lead to
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the current divergences

S „V„~J)(x) =.,f„,S~')(x), S„~„~')(x)=(;d,„+.,d,„)I~')(x).

Now, if we write the usual spectral representation for the commutator,

«IlA„")(x),&,")(y)]lo)= dm' 6„„-', a„s„p,, ~')(m, p)-p, . ~) ', s„s,a( -y, )
0

(3)

(4)

where

and a similar one for the vector currents, we obtain, on taking divergences of both sides and setting
x0 = y0, the relations

I;,= f, dm'p;, ~') (m, A) =-(e,d„j,+ e,d„~)(t,d, jg, + t,d„g,),

E;~ = f dm p; (m, V) =-e8$8f 8; jf~~)„

g, =&ols~') (o)lo), g, = &ols~8)(o)lo) (5)

are the only nonvanishing vacuum expectation values of the scalar density operator. Defining the real
parameters a, b, and y by

(6)

Eq. (4) leads to the following relations:

I» = y(1+ a)(1+ b), I« = y(l-a/2)(1-b/2), K« = (9/4)yab, I, , = y(1+ a)(1+ b),

, = y(1-2a)(1-2b), I, 2
= I 2, =0,

where we have used the following combinations:

( 1)(x) (g (8)(x) + ~2A (0)(x)) ~ ( 2)(x) (g (0)(x) ~2g (8) (x))
1 1

P P & V ~g P P (8)

instead of A„' and A„'.
We now investigate the consequence of the pos-

itivity conditions in the Hilbert space:

IJ~
~ 0, KJ~ ~ 0 (no summation over j) (9)

The requirement (9) on Eq. (7) can be shown to
lead to solutions for a, b, and y confined within

the seven domains in the a-b plane shown in Fig.
1. Notice that t", b, and y cannot assume arbi-
trary values. The boundaries of these domains
are intimately related to symmetries under vari-
ous subgroups of W(3). Indeed, from Eq. (2) we

find the following: (i) a =0 implies &„V„~~)(x)=0
for j=0, 1, ~ ~ -, 8, i.e. , exact validity of the usual

group U(3). (ii) a =-1 leads to B„A„~')(x)=0 for
j =1, 2, 3 as well as &„A„~ ')(x) =0. Since the usu-
al isospin together with the hypercharge is a good

symmetry, the point a = -1 corresponds to the
subgroup W(2) =U~' (2) I8I U (2). (iii) a = —, gives
&„A„~")(x) =0 which leads to the symmetry group

U~ ~ ')(1). Thus, a = —,
' corresponds to the sym-

metry Z=U(2)t8) U„~ ')(1), where U(2) represents
the ordinary isospin and hypercharge group.
(iv) a =2 leads to &„A„(x)=0 for j=4, 5, 6, 7. If
we set x")=i Jd'xV4 (x) for n=1, 2, 3, 8 and x

= i jd'xA 4
")(x) for a = 4, 5, 6, 7, then x "' (n = 1, 2,

~ ~ ~, 8) are easily shown to be generators of a
new SU(3) group which we may call the chimeral
SU(3) because of the parity mixup.

If the vacuum is nondegenerate, i.e., if no

Goldston boson of zero mass appears when one of
these group symmetries is reached as we change

//rr
&rrir

FIG. l. Allowed domains for the parameters a and b.
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the value of a, then it is easy to show that we

must have b =a at a=-1, 0, 2, and 2. For exam-
ple, it is easy to see that v2S~"(x)+S~'~(x) be-
longs to a, (2, 2*)S (2*, 2) representation of the

group W(2), so that its vacuum expectation value
is zero when W(2) is an exact symmetry group,
provided that the vacuum state is nondegenerate.
Thus, a = -1 in this case leads to b = -1. Indeed,
one can prove the converse also. For instance,
if 5 =2, we obtain from Eq. (7) I«=0. The posi-
tivity condition of the spectral weight then im-
plies &„A„"(x)=0 which leads to exact chimeral
SU(3) invariance or a =2. Notice in particular
that the converse statements do not require the
assumption of nondegenerate vacuum.

We shall now appeal to a continuity argument.
We may regard b as a continuous function of a,
b =f(a), except possibly at a few points. In fact
these isolated points can be shown to correspond
to those cases where we encounter group sym-
metries realized via Goldston bosons. At a = -1,
since W(2) is presumably such a symmetry group,
b will not reach the value -1, so that as a is de-
creased below -1, the value of b will jump dis-
continuously as is evident from the Fig. 1. Thus
a =-1 is an essential singular point of the theory.
Similarly, it is tempting to conjecture that a =2
is also an essential singularity. In this case, the
chimeral SU(3) symmetry would be realized
through the emergence of zero-mass Goldstone
kaons. One can also convince oneself that the
points a =0 and a = —,

' in all likelihood are not sin-
gular. One reason is that if this were not the
case, it would be difficult to understand the suc-
cess of the GMOR theory which utilizes a pertur-
bative approach and leads to the determination
a =-0.9, suggesting that the perturbation theory
makes sense with a radius of convergence ~a~

=0.9.
An application of the Uz ~ 2~(1) symmetry at

a =
& now implies, for instance, that correspond-

ing to the K meson there may exist a scalar
counterpart ~, which at a =-,' has the same mass
as the K. It is quite interesting that although the
original chiral W(3) symmetry may well be real-
ized through the existence of pseudoscalar Gold-
stone bosons without the necessity of introducing
scalar mesons, the above consideration at a =

&

independently suggests the existence of the sca-
lar z meson. Then the validity of the usual SU(3)
group at a =0 demands the existence of a scalar
I=1, Y=O particle 0, the counterpart of the pion.
Now, with respect to the U~ ~ '~(1) group, exact
at a = —,, we have two possibilities: (i) n and 6

transform separately as singlet representations
of this group; (ii) m and 6 transform as a parity
doublet so that at a =

& we would expect m„=mz.
The first possibility is probably the the simplest
but also the least interesting one, as we shall
see presently. The possibility (ii) however, re-
quires a constraint. This arises because it is
easy to see that the current A

&

~ (x) (j = 1, 2, 3)
must be invariant under the gauge transforma-
tion generated by E, ~ '~ =-i JA, ' "(x)d'x so that
the coupling of the pion to A

&
must vanish at

a = 2, if the pion does not transform according to
the singlet representation of U~ ~ '~(1). Howev-

er, we shall adopt the possibility (ii) for the re-
mainder of this paper.

We now apply this formulation to obtain sum
rules. If we regard the mass of a particle as a
function of the symmetry-breaking parameter a,
we have for the meson masses the following con-
straints: (i) m, '=0 at a=-l, (ii) m~ =0 at a
=+2, (iii) m, ' = m~' and m, ' = m, ' at a = 0, and
(iv) mx~ =m, ' and m, =m~2 at a =-,. Simple
mass relations satisfying these constraints can
be written down as

m, 2 = (1+a)m, '(a), m ~~ = (1-a/2)m, 2(a),

m, ' = (I-2a)R (a) + —,amos(a),

m z' = (I-2a)K(a) + 3am, '(a), (10)

where m, ' and K are some unknown functions of
a. From Eq. (10), we obtain readily

m, /m~ =2(1+a)/(2-a)

mK ~mg —mg ~m~2 2- 2 2

The relation Eq. (11) is identical to the result'
obtained by GMOR and leads to a determination
a =-0.89. In the mass formula (12) if we use the
experimental value rnz =960 MeV, we obtain m,
=1070 MeV which is quite compatible' with re-
cent experiments and also agrees with values ob-
tained from recent theoretical analyses of the

K» problem. It is also interesting to remark
that Eq. (12) has been obtained before' from per-
turbative SW(3) arguments with a different SW(3)
breaking interaction. Now the coupling constants
of (w, K) and ~ mesons to axial vector and vector
currents, respectively, must obey the following
constraints: (i) f, =0, f~ =f, at a = 2', (ii) f, =f&,
f, =0 at a =0. Proceeding as before, we obtain

(13)

Taking f~/f, = 1.2 we get f, =0.2f, in reasonable
agreement with several estimates'' of f,.

1414



VOLUME 23, NUMBER 24 PHYSICAL REVIEW LETTERS 15 DECEMBER 1969

Finally, we would like to mention that one can
ea.sily write down the analogs of Eqs. (12) and

(13) in case of vector and axial vector mesons to
obtain

mg mA —mme m2 2= 2 2
A 1 P

(14)

*Work supported in part by the U. S. Atomic Energy
Commission.

~See, e.g. , R. F. Dashen, Phys. Rev. 183, 1245

G~ -GA =Gg-. -G .
A y

' P'

It is interesting to note that Eq. (14) leads to
m&„=1200MeV. Also, Eq. (15) is quite com-
patible with the Weinberg second sum-rule pre-
dictions for SW(2) symmetry.

Details of this work with more applications will
be published elsewhere.
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Proposals are made predicting the character of longitudinal-momentum distributions
in hadron collisions of extreme energies.

Of the total cross section for very high-energy
hadron collisions, perhaps —,

' is elastic and 10
of this is easily interpreted as diffraction disso-
ciation. The rest is inelastic. Collisions involv-
ing only a few outgoing particles have been care-
fully studied, but except for the aforementioned
elastic and diffractive phenomena they all fall off
(probably as a power of the energy at high ener-
gy). The constant part of the total inela. stic cross
section cannot come from them. And we know

that at such energies, the majority of collisions
lead to a relatively large number of secondaries
(perhaps the multiplicity increases logarithmi-
cally with energy). These collisions have not
been studied extensively because, with the large
number of particles, so many quantities or com-
binations of quantities can be evaluated that one
does not know how to organize the material for
analysis and presentation.

It is the purpose of this paper to make sugges-
tions as to how these cross sections might be-
have so that significant quantities can be extract-
ed from data taken at different energies. These
suggestions arose in theoretical studies from
several directions and do not represent the re-
sult of consideration of any one model. They are

an extraction of those features which relativity
and quantum mechanics and some empirical facts'
imply almost independently of a model. I have
difficulty in writing this note because it is not in
the nature of a deductive paper, but is the result
of an induction. I am more sure of the conclu-
sions than of any single argument which suggest-
ed them to me for they have an internal consis-
tency which surprises me and exceeds the con-
sistency of my deductive arguments which hinted
at their existence.

Only the barest indications of the logical bases
of these suggestions will be indicated here. Per-
haps in a future publication I can be more de-
tailed. '

Supposing that transverse momenta are limited
in a way independent of the large z-component
momentum of each of the two oncoming particles
in the center-of-mass system (so s = 2W'), an
analysis of field theory in the limit of very large
W suggests the appropriate variables to use for
the various outgoing particles in comparing ex-
periments at various values of W in the c.m. sys-
tem. They are the longitudinal momentum I', in
ratio to the total available W, i.e. , x = P, /W, and
the transverse momenta Q in absolute units.
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