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Considerable evidence for duality is found in a study of the amplitude for m p
(1236) scattering at center of mass energies 1.5-1.8 GeV. Cancellation between

dominant contributions from the 2+, E&&(1690) and the 2, D)3(1520) is primarily respon-
sible for the local averaging.

We have examined the four independent ampli-
tudes constructed from experiment' for the reac-
tion m +p - w '+ 6 and find considerable evi-
dence in support of the hypothesis of local aver-
aging in the low intermediate energy region.

Assuming that no significant I=2 exotic m~ res-
onances exist, the duality hypothesis' implies in
the present case that each appropriately con-
structed t-channel amplitude will have an imagi-
nary part which averages "locally" to zero. For
a. ange of physical t values, -0.3- t- -0.011, in
the rather narrow energy interval. , 1.5 GeV
-E, -1.76 GeV, we find strong duality shaping
in each of the four helicity amplitudes, especial-
ly at low momentum transfer. Generally speak-
ing, we find that good d-shaping results from the
cancellation of contributions from the two nucle«
on resonances F»(1690) and D»(1520) and a con-
comitant small D»(1690) and background contri-

bution.
The s-channel helicity amplitudes for m +p

—77'+ 6 were constructed from the preliminary
partial-wave analysis of the Stanford Linear Ac-
celerator Center-Lawrence Radiation Laboratory
(SLAC- LRL) inelastic pion-nucleon experiment
reported at the Vienna Conference. ' We shall
present results based on their resonance-plus-
background solution shown in Table I.' Of spe-
cial interest in Table I are (1) the dominance of
the three nucleon states with no resonant I= &

partial waves being necessary; and (2) the nega-
tive sign of [y,N(D3)x, z, (S3)J"'.' Such a negative
sign, which is also the sign of the imaginary
part of the corresponding partial-wave amplitude,
cannot appear in an elastic amplitude.

The four independent s-channel helicity ampli-
tudes are formed by summing the phenomenologi-
cal partial-wave amplitudes of Table I:

fp, „,'(s, f)

=(s/p, ~p„~)'~2 Q (2L+ I)'~2(2L'+1)U C(L2~J; OA)C(L'2J; pO)d~~ (cosB~)TLig ' (s),
J, L, L', I

where L, A, (L', p) refer to the orbital angular momentum and helicity of the initial (final) state. ' The
resonant partial-wave amplitudes are normalized as follows:

7'r. , I. '= lX.N(L)X, ~(L') l "'/(&-~),

where

e =(F-„,-F-, )/(I'/2). (2)

The t-channel helicity amplitudes f& „»' are then obtained from f„~' by direct application of the
Trueman-Wick helicity crossing relations, ' '

fpig/ (Sy f) +dpi/ (X+)d pl p (Xg)fp y (sy f)~

A., p

Finally we form the kinematic-singularity-free amplitudes, ' f„.~. (s, t). We have

f, ~, » -&~~p'(C') '"" " f p ~, 00.

(3)
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Under s —u (v —-) ),"

t. {I)( ) -( I)1+Ix&-xz)/ &, {I)(+&)

The isospin crossing relation is

f(I, =2) =f'(P -& ') =(-')'"f(f.=-')-(2/15)'"f(I, =-.') =-(s- ).

In our case, assuming there is no significant
I =2 Ttm -Nh Regge amplitude, the finite-energy
sum rules all have the form

f & IIIlfpiyi (v)dv 0,

Duality is the hypothesis that the integrand,
and hence Imf„.„.', will itself locally average to
zero. The significant question is of course how
local is the averaging, that is, how far around
any specified energy one must average and how
low in energy one ca,n go.

In Fig. 1 we show the imaginary part of each
amplitude, Imf ', for four (physical) values of the
momentum transfer (the value -f =0.011 is the
minimum momentum transfer at E, = 1500 MeV).
Some prominent features of these curves are
the following: (A) All of the amplitudes show
strong duality shaping for small -t with general-
ly poorer d shaping as ItI increases. (B) For
the strongly d-shaped amplitudes, the "wave-
length" of the oscillations around zero is ap-
proximately 300-340 MeV"; i.e., slightly larger
than the energy interval of the data, with Imf '
passing through zero around 1600 MeV. (C) All

Table I. SLAG-LBL partial-vrave amplitudes for
m p m+E at cm energies 1.5-1.76 GeV from Ref. 1
(corrected). L (L') is the initial (final) orbital angular
momentum. The initial c.m. momentum P» is ex-
pressed in GeV.
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of the amplitudes show some damping at higher
energies. The latter feature is a result of sever-
al factors. Probably dominant is the fact that we
are moving away from all the resonant peaks.
%e also expect damping as we go to higher ener-
gies, since the range of physical t values is in-
creasing rapidly with E, , whereas the total
channel cross section is not. ' Finally, there is
some artificial high-energy damping introduced
into the amplitudes when we divide out the kine-
matical singularities, viz. those contained in the
Kibble boundary function' C. The damping is
greatest for f »»„' i.e., for the amplitude with
the maximum Il1'-A'I.

It should be noted that for the energies and t
values shown, the s-channel scattering angle
varies over a wide range, from 0, near zero to
almost backward angles. "

In order to see more clearly when and how du-
ality shaping comes about, it is necessary to
study (at a specified t) the separate resonance
and background contributions to each amplitude.
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FIG. 1. Imf
„,

I&i oo vs &c ~ for &=0.011, 0.1, 0.2,
0.3 (GeV) 2, corresponding to the curves labeled 1, 2,
3, and 4, respectively.
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We illustrate this in Fig. 2 where we have drawn
the individual resonance and combined back-
ground contributions of Table I to the two ampli-
tudes (-22) and (2-', ) for -&=0.011 and 0.1.

From Fig. 2 and the similar curves for the
other amplitudes and t values we can observe
the following: Strong duality shaping is generally
a result of approximately equal and opposite con-
tributions from the F»(1690) and D»(1520) reso-
nances, coupled with a relatively small and flat
contribution from the D»(1680) and background
amplitudes. This is the typical pattern at small
-t. In some "good" cases the parts of Imf' due
to the background and D» are not small, but ap-
proximately cancel especially at higher E,

The spacing and peaking of the dominant reso-
nant amplitudes is directly reflected in Imf'
and accounts both for the wavelength of the oscil-
lations and the vanishing of Imf' (roughly half-
way between the two peaks) noted above in (B).
For small t, the D» generates a somewhat nar-
rower and higher peak at low E than the peak of
E» at higher energies.

The cases in which duality fails are not simple
to characterize. For most of them, the E,5 and

Dye still contribute with opposite signs but now

the background and/or D» contribution is large
and spoils the cancellati. on. Typically the com-
bined background contribution is small and flat

'

at low t but becomes larger and develops a low-
energy peaking as -t increases.

We have also examined Imf' formed from only
the resonance contributions in Table I. On the
whole this yx oduces little overall change in the
degree of duality shaping. We believe that by in-
cluding the background amplitudes of the (SLAC-
LRL) fit our results are less model dependent.
Furthermore, one should probably regard the
background amplitudes of Table I as mainly rep-
resenting parts of additional weakly coupled (or
unresolved) resonances rather than a true non-
resonant background corresponding to some
(hitherto undiscovered) I= 2 Pomeranchuk-like
J-plane singularity. "

It is clear from the figures that the strength
and shape of a resonance contribution to an am-
plitude depends in a complex way on the I; value
and helicities, in addition to the resonance pa-
rameters and quantum numbers. For example,
even the sign of a resonance contribution to a
particular t-channel amplitude can change when
t is varied by a small amount. Of course, all of
this complexity is contained in Eqs. (1) and (3).

Finally, we w'ish to make several remarks of a
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more theoretical nature.
(A) As noted above, in the cases where we have

strong d shaping the dominant effect is a cancel-
lation (over a. range ~ =320 MeV) between two

nucleon resonances, the F,.(1690) and D»(1520).
This suggests placing these 2' and 2 states on
exchange-degenerate N ~-P& Regge trajectories,
although the slopes are quite different in the usu-
al nucleon trajectory assignments. "

We do not seem to require any further exchange
degeneracy between different isospins, as has
been suggested in the meson case, '4 to suppress
the existence of exotic resonances in the t-chan-
nel, i.e., no strong 6 states seem necessary.

Our results are of interest in connection with
the recent work of Mandula, Weyers, and Zweig"
on the consequences of exact and "broken"duality
for SU(3), or quark model, baryon trajectories.
The exchange degeneracies which they find com-
ing from I'-8 and I'-b scattering would be con-
sistent with our suggestion of an exchange degen-
eracy between the octet &', -,'' nucleon trajectory
and the octet —, trajectory. Their work implies
that an exchange degeneracy between the decuplet
—,"trajectory and the octet —,

' is also required.
(B) It is interesting to note that we can achieve

duality with the E» and D»9 two states which
satisfy the (J-L =I-l) rule for prominent reso-
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FIG. 2. Individual resonance and total background
contributions tc (a) Imf ll 00 and (b) Imf) ~„00 fcr -~
= 0 ~ 011 and 0.1 (GeV)2. The error bars indicate tbe un-
certainty in ()(~~X~a)"' of the resonant amplitudes.
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nances, discussed by Chiu and Kotanski" in their
study of "Schmid" circles" in pion-nucleon scat-
tering.

(C) The existence of t-channel Regge cuts (with
I=2) is expected to modify the right-hand side of

Eq. (4), especially for large t. -However the
relative importance of such an extrapolation of
cut effects to low s is not clear.

(D) It is worth emphasizing that the sign of an
s-channel resonance contribution to a t-channel
amplitude depends on many things besides the
isospin crossing matrix which has usually been
stressed. " As Fig. 2 illustrates, the sign also
depends on J, L, L', t, and the inelastic width
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