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~4The location of the conjectured change in slope is
presently questionable. The nominal value we report
is based upon straight-line extrapolation of the data
and is quite sensitive to the slope of these lines.
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The dynamical symmetry of a charged spinless ha. -. monic oscillator in a constant mag-
netic field is identified. For lcw fields it is SU(3), for high fields SU(2, 1), and for a
certain definite intermediate field SU(2) SH.

The problem of a charged particle in a magnet-
ic field was recently discussed, with new inter-
est in the infinite degeneracy of the continuous
eigenenergies. ' lt was also noticed that when a
harmonic-oscillator potential is added to the
Hamiltonian, one can, with a certain choice of
parameters, get a system with an infinitely de-
generate discrete spectrum. ' The extent to
which the "accidental" degeneracy of a quantum
system is understandable in terms of irreducible
representations of the dynamical symmetry
group of the corresponding Hamiltonian is of
current active interest. ' Dynamical symmetry
groups hitherto considered —e.g. , O(n+ I) for
the n-dimensional Kepler problem, SU(n) for the
n-dimensional isotropic harmonic oscillator
-are all compact. Noncompact groups which
entered the field of dynamical symmetries are
the noninvariance groups of these systems. An

attempt is made to relate the above-mentioned
infinite degeneracy to a noncompact invariance
group.

The Hamiltonian for a charged spinless parti-
cle in a constant magnetic field E = 2Mccu/e di-
rected towards the z axis and a potential ~Mes'z'
can be shown to be'

5('=P'/2M + &uM'r'/2+ &uLi.

These operators satisfy boson commutation re-
lations analogous to the Cartesian creation and
annihilation operators introduced in Eq. (2).
With this notation it follows straightforwardly
that

II = 28'8+C'C +2. (4)

This is seen to be equivalent to a two-dimen-
sional anisotropic harmonic oscillator with ~~
=2, ~~= I. The dynamical symmetry group of
this Hamiltonian was shown to be SU(2). With
this observation, any degeneracy associated with
the four operators 8, Bt, C, C~, has been taken
into account. It is clear, however, SU(2) being
compact and thus having finite-dimensional rep-
resentations, that no infinite degeneracy has
been introduced. The additional degeneracy
present is associated with the third coordinate,
represented by A and A ~. These two operators
generate the noncompact Heisenberg group H. '
As they commute with the four operators gener-
ating SU(2) and with the Hamiltonian it follows
that the dynamical symmetry group of the Ham-
iltonian is SU(2) Igw H.

For the more general system having a poten-
tial k'(x'+y') +kz' and in a magnetic field direct-
ed towards the z axis but of strength E = 2c [(k
-k')M]' '/e, we get'

&=a~ a~+a& a&+a~ a~+2

+i(a~ta -a ta~). (2)

Defining H = R/Re and introducing the notation of
second quantization we get

X=P'/2M + akr'+eEL~/2Mc

or, using the notation of Eq. (3),

H = nA tA. + (2 o.)BtB+Ct C -+ a, (5)

Let

A=(a +xia&)/ 2,vent=(a "-ia&t)/v2;

B = (a -ia&)/W2, Bt = (a„t+ia&t)/W2;

C =a, C ~=a~~. (3)

where n = I-eE/2Mc~. For the case E= 2Mc&u/8

we get o.'= 0 which brings us back to Eq. (4). Re-
versing the magnetic field we get a Hamiltonian
H =2A. A. +C C+2 with similar consequences.
For 0&o. &2, i.e. , iEi &2Mc&u/e, the Hamilton-
ian, Eq. (5), is that of a three-dimensional an-
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isotropic harmonic oscillator. For
~ E( & 2Mc~/e

we get a negative coefficient either of A. tA. or of
B~B. This Hamiltonian represents a three-di-
mensional anisotropic harmonic oscillator with
negative mass in the direction associated with
the negative coefficient. Its energy spectrum
spreads discretely from - to . This situation
can be understood in the original coordinates as
resulting from the magnetic field being strong
enough to cause the splitting to be so wide that
one gets an infinite number of levels in the neg-
ative energy range. It is easily seen, observing
the manner in which the splitting occurs, that
for rational n in the range +&0 or a&2 infinite
degeneracy results. To obtain this result rigor-
ously let

8t (~t)n(~t)m

The commutator of this operator with the Hamil-
tonian defined in Eq. (5) is [H, 8 ]= [-n(m-n)
+2m]8t. For o. =2m/(m-n), i.e., any rational
o'. , [H, 8 "]=0. Starting from any eigenstate, an
infinite number of states can be produced by op-
erating successively with 8t Tha. t 8t~) cannot
vanish follows from its being a creation operator
for quanta in a harmonic oscillator. From the
fact that 0 commutes with the Hamiltonian it
follows that the infinite number of states pro-
duced are all degenerate. As the invariance
group of a harmonic oscillator is SU(3),' it fol-
lows immediately that for the system represent-

ed by the Hamiltonian Eq. (5) which is a non-pos-
itive-definite invariant the appropriate invari-
ance group is the noncompact counterpart SU(2,
1). This is seen most transparently by introduc-
ing complex coordinates' thus formally identify-
ingAtA with ~&~', etc. , and using the definition
of SU(2, 1) given for example by Biedenharn. '

A further study of the transition from SU(3)
through SU(2) Igw H to SU(2, 1), the associated de-
formation in the Lie algebra, and, particularly,
the implication of some results on energy-level
crossing' seems to be desirable. A complete
identification of the presumably reducible rep-
resentations of SU(2, 1) in the various situations
realized should also be interesting.
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We obtain, on the basis of general principles only, a quantitative formula for the dis-
tribution of pionization products in ultrahigh-energy scattering as a function of the lon-
gitudinal momentum. Field theory is then used as a model to show the existence of the
pionization process, and it also serves as an example in which the formula is satisfied.
A highly feasible storage-ring experiment is proposed to test this predicted distribution
and hence the underlying principles.

There are two prominent features in cosmic-
ray events'. (i) two fire balls, and (ii) produc-
tion of pions of relatively low evergies in the
c.m. system. Recently, there has been a great
deal of interest in this second feature, ' common-

ly referred to as pionization.
%e wish to point out in this Letter that quanti-

tative results on the distribution of these pions
can be obtained from the thesis' that hadrons are
extended objects with many internal degrees of
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