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The isospin degree of freedom of the pairing force is studied in the framework of the
rotational (D & 0) and vibrational (6 =0) models. The magnitude 4 is the BCS gap pa-
rameter. The predictions of the two models concerning two-nucleon transfer reactions
and energy levels are compared and contrasted. Some of the available experimental
material around Ni56 is discussed in this framework. Further experiments are suggest-
ed which would help decide between the coupling schemes.

In medium-weight nuclei, where neutrons and this state by the set of quantum numbers (N, T, ;
protons fill the same shells, it is important to N, T» TT, ). Here T, is the total isospin of the
take account of the isospin properties of the T = & N, removal quanta. It can take on the values T,
pairing force. The character of the spectrum =N„N, -2, ~ - ~, 0, or 1. (The situation is fully
that results depends upon the strength G of the analogous to the angular momenta possible for
pairing force. Let G, be the smallest value of G N, quanta in the isotropic three-dimensional har-
for which there exists a solution of the BCS equa- monic oscillator. ) Similarly T, is the total iso-
tions. Then if G «„ the system can be described spin of the N, addition quanta. The total isospin
in terms of pairing vibrations; if t" &t", the sys- T can assume all values consistent with the tri-
tem can be described in terms of pairing rota- angle conditions with T, and T, . We sometimes
tions. omit its ~ component T . Naturally, all these

(1) Pairing vibrations (nonsuperconducting sys- states are 0'.
tems). "—First a choice must be made of the ref- In general, the lowest states will be those with

erence state ~0), which will serve as the "vacu- fewest quanta. As an example, we consider pair-
um" of the vibrations. In the following, we choose ing vibrations in, 4Cr„". Here T =2, so the
this to be the Ni" ground state. We then define lowest value of T is 2. Since 2&& (N, N, ) = -4, —

boson creation operators ay &0 0
y

for addi- the fewest quanta would be achieved with N, =O,

tion quanta. When a, ' acts it adds two nucleons N, =2. Thus the Cr" ground state would be (22;
in a highly correlated T =1, T, =7', I'=0' paired 00;22). The next Cr" state would have N, =1, N,
state, predominantly composed of orbits outside =3, and would be of the form (31;11;22)or (33;,
~0). Similarly, the boson creation operators r, ', ll;22) or (33;11;32)or (33;11;42). In a pure har-
l 0 7

y
remove two nuc leons in a highly corre — monic des cription, all thes e N, = 1, N, = 3 states

lated paired state, predominantly composed of would have the same energy. However, we expect
orbits within ~0). It is sometimes useful to think that states of lowest T„T,, and T will lie lowest.
of the nucleons added by a, ' as being in the 2p, y, States in the nucleus „Cr„"must involve at
shell, and the nucleons removed by r, ' as being least two nucleons beyond ~0). Thus, N, ~ 1, and

in the 1f,g, shell. the ground state would be (22; 11;33). The cross
If N, operators a, ' and N, operators r, ' are section for the addition of an ~ quantum in the

applied to ~0), there results a state with 56+2(N, pickup reaction (2, t, )+(N T, ;N, T, ;TT,)- (2, t ')
-N ) nucleons. It is convenient to characterize +(N, +1, T,';&,T, ; T'T, ') is given by

&r = & r(T I T» Tz'-Tzl T'Tz')'(I 2~ tz'-4) 4 I
24')'U'(T, T' T,1; T, 'T)

X r r
(T~+1)(N~+T~+3) T~(N~-T~+2) (1)+&T ~ T -g2T~+ 3 Tr ~ Tr y 2T —1

The corresponding expression for the addition of an a quantum in the stripping reaction (—,, t )+ (N T, ;
Na T» TT~) - (2, t~') + (Np'»N, + 1, T, '; T' T, ') is obtained from (1) by interchanging the subscripts r
and a. The constants n and n, aepend upon the microscopic structure of the x and a pairs.

(2) Pairing rotations (superconducting systems). ' —If G & G, a permanent pairing distortion exists,
and the description of the isospin degree of freedom is similar to the description of the rotational de-
gree of freedom in deformed nuclei. States in a given nucleus are grouped into bands built upon an in-
trinsic state. Assuming axial symmetry in isospin space, we associate a K quantum number with each
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intrinsic state. The possible isospins in the corresponding band are T =K, K+1, K+2, ~ ~ ~ . If K=O
we have the additional restriction that ~T ——,A~ must be even. As in quadrupole-deformed nuclei, we
expect K=0 for the lowest band. The intrinsic state is characterized by two vibrational quantum num-
bers, n& and n&. The & oscillations are vibrations of the gap parameter. They preserve axial sym-
metry, whereas the I' oscillations cause deviations from axial symmetry. K =n& if nz ~1. Thus the
quantum numbers needed to specify a state in the rotational scheme are (A, n&, n&&K, T, T, ). A random
phase approximation calculation indicates that 4 and I' oscillations are degenerate, v&= ~&. We illus-
trate again with the nuclei Cr" and Cr". The ground state of the former has n&=n& =0=K. It is the
T =2 state of aband with T=0, 2, 4, 6, ~ ~ ~ . The T =2, T =4, 6, ~ ~ ~ members of this band are ex-
cited states in Cr". Other excited states are members of an n~=1, nr=0 band (T =2, 4, 6, ~ ~ ~ ), or
an n&=0, nr=1 band (T =2, 3, 4, ~ ~ ~ ). The situation is similar in „Cr»", except that members of
the K=O bands have odd T.

The cross section for the two-particle transfer reaction (2, t, )+(A, O, O, O, T, T,)-(2, t~')+(A+2, n&,

nr, K, T'T, ') is given by

o =, (T1T T '-Tz~T'Tz') ( g t~'-tz& t~(gt~') (TIOK~T'K)'

(2)

Here the constants n~ and e+ depend upon the de-
tails of the reaction, as do the o&, and n, in (1).

There is a remarkable similarity between the
structures of the pairing vibration and rotation
level schemes. These schemes are compared
and contrasted in Table I. We now discuss spe-
cific experiments that could distinguish between
the two schemes. We ignore Q-dependent effects.

(1) The forbiddenness described in Table I(e)
allows us to test the vibrational scheme. This
test is especially meaningful if the final state in
question can be reached by an allowed reaction,
in addition to the forbidden reaction. For in-
stance, ' (T,P) on Ti '(51; 00; 1) populates the (51;
ll; 2) states in V '. These cannot be reached by

(P, &) on Cr"(31;00;1). The state (51;11;2)in
Ti ' can be populated by (t,P) on Ti"(51;00; 1)
but not by (P, t) on Ti"(33;00; 3). Moreover, the
T = 0 analog of (51;11;2) in Cr4' cannot be popu-
lated by (P, t) on Cr"(31;00;1). The stripping
and pick-up reactions to the rotational counter-
parts of these states are allowed.

(2) A similar comparison is afforded by the re-
actions Cr'o'"' (t,P). In Cr'o(t, P), the vibration-
al scheme predicts transitions to the ground state
and to an excited state (both having T =2). But
only the ground-state transitions are allowed in
Cr'2'4(t, p). In the rotational scheme, ground and
excited state transitions should be seen in all re-
actions, with comparable intensities. The data
seem to favor the vibrational scheme, since the
ratios of the excited to ground-state intensities
in these three reactions are 1.2, 0.12, and 0.04,
respectively. '

(3) See Table I(c). The experimenta, l, vibra. —

I tional, and rotational ground-state cross sections
for Fe""(t,P) are, respectively, 1/1.6,' 1/2,
and 1/0. 9. For the ground-state Ni" "(P,t) re-
actions, they are 1/1. 3/1. 4/1. 3,' 1/2/3/4, and
1/1.2/1. 3/1. 3, respectively. For the ground-
state Zn" " reactions, they are 1/1.0/0. 9/0. 9,'
1/1.4/1. 7/2. 1, and 1/1.1/1. 1/1. 14. Thus, the Ni
and Zn data favor the rotational scheme. The
Ni", Ni", Fe", Fe', and Cr"(r,P) reactions to
the ground-state analogs have cross sections' in
the ratios 3.83/4. 80/2. 56/1. 17/1. The vibration-
al ratios would be 3/3/2/1. 5/1, whereas the rota-
tional ratios would be 1/1.4/1/1. 4/1. Thus these
data favor the vibrational scheme. The corre-
sponding numbers for Ti"' '(7,p) are 1/2. 2 (ex-
perimental), 1/2. 8 (vibrational), and 1/1.4 (rota-
tional), again favoring the vibrational scheme.

(4) See Table I(d). In some cases where two re-
actions populate a state, the ratio of cross sec-
tions in the vibrational scheme involves n, /o. »
whereas in the rotational scheme this ratio is in-
dependent of nz or n, (if both reactions involve

n&, or both involve o& ) For in. stance, (P, &) on
Ni"[(00; 11;1)/(58, 0, 0, 0, 1)] and (~,P) on Fe'4[(11;
00;1)/(56, 0, 0, 0, 1)] may populate the [(11,11,1)/
(56, 0, 1, 1,1)] and the [(11;11;2)/(56,0, 0, 0, 2)]
states in Ni". The ratio between stripping and
pickup cross section to the same level are pro-
portional to n, /n, in the vibrational coupling
scheme and to n&/n&—- n /n =1 in the rotational
coupling scheme. Analogous states of the above-
mentioned T = 2 state in "Ni may be reached by
Fe'4(t, P) or Ni"(P, t). The ratio between these
latter is 6n, /n in the vibrational scheme while
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Table I. Similarities and differences between the vibrational and rotational isospin pairing coupling schemes.
All arguments are symmetric with respect to r and a quanta. For instance, the discussion in (a) also applies to
the state (00;NT;T).

Similar ities Differ ences

a) In both schemes there is a subset of states
(henceforth called the Z-subset such that
only ground states and their isobaric analogues
belong to it. In the vibrational scheme,
this subset consists of the states (» &»; l ),
with N = ~A ~.~/&, A~ being the number of
nucleons in t op . In the rotational scheme,
all states ( A, o, &, o, T ) constitute this
subset. In both schemes, the rule T-

&
even is

valid for states of the subset.

a) In the vibr ational scheme, states in the
Z-subset satisfy T& N:- IA-Aol/p. In the
r otational scheme, the T values are un-
bounded. Thus all ground states of even A
nuclei ar e in the Z-subset of the r otational
scheme, whereas some even A ground states are
not in the Z-subset of the vibrational
scheme. For instance, the ground state of

is ( &, ~, o, o &
& ) in the rotational

scheme, but is (++ & ll; & ) in the vibrational
scheme. The state (aw; l l . 5 ) is not in the
Z-subset. This occurs whenever z&)8 and N 5 28

b) In both schemes it is useful to define a
Y subset of states. This subset has two
parts:

'f:
)

( ——, l odd (N. ~ T; ~~, T ) or (K&, ~, ~, w )
even (a&1 T+1; ll ~T') or (Q ' T )

J

b) If T & ~~), thex:e is no vibrational member of
the Y, subset. The state ( ~6, ~, l, l, 3 ) in
corresponds to (», a2; 3 ), which is not in
the f, subset. This is the only example that
can be reached by a two-nucleon transfer
reaction.
If T ~ "' ~, there is no vibrational member of
the Yq subset. (The (~~~, &~l, l l, ~«& ) state
corresponds to a state belonging to the Z-subset
in the rotational scheme (see a above) ).

c ) Tr ansition r ates of two-nucleon tr ans fer
r eactions ar e pr opor t ional to geometr ical
factors depending on initial and final values
of T and

c) In the vibrational scheme, the transition rates
may increase with (A-Ao I, as they depend upon
the number of phonons present in the initial
and. final states (see eq. (l) ). In the
rotational scheme, they are independent of A

(see eq. (2) ).
d) The transition rates depend upon two constants

in both schemes, &, and 4~ in the vibrational
scheme, and +'z any & in the rotational scheme.

e) In both cases, transitions populate members of
the g and 'f subsets.

d) If' two or more states with the same T exist in
the final nucleus, the transition to the lowest
state is .proportional to &~ in the rotational
scheme. In the vibrational scheme, this tran-
sition can be proportional to either e', or ad~

e) In the r otational scheme, all Z~'f transitions
are allowed. In the vibrational scheme,
transitions of the form (»~»~ T )~(&~& T~ l~,' T )
are forbidden.

f) Correction terms must be added to the energies f ) In the vibr ational scheme, the lowest or der
given in the opposite paragraph. In the energies are linear in the number of quanta
vibrational scheme, we find diagonal matr ix (E. = &(~a+ ~r ~ & ) ). In the rotational scheme,
elements of the Hamiltonian proportional we have a three-parameter expression in lowest
to T(T~& ), A, (0 +~» ) and T 'To. if we order ( E. = —" T (T + t') + —" (A-A. ) (~z n„+ t)4&).uP '2Qmaintain symmetry between addition and removal
quanta and confine ourselves to anharmonic terms with 4 phonon operators. In the rotational scheme we
may introduce different moments of inertia for the 8 and t oscillations, which is essentially equivalent to
ther T term in. the vibrational scheme. In the rotational scheme, the degeneracy of the &z states is
lifted by a term involving T, while a quadrupole isospin term plays a similar role in the
vibrational scheme. Thus, the corrected energy spectra produced by the two models are essentially
the same.

it is 6(n, /n, ) in the rotational coupling scheme.
Conversely, if two reactions populate states T,
T + 1 in the same final nucleus, it may be that
o T/oT, , is proportional to nz/n, in the rotation-
al scheme, but is independent of n, /n, in the vi-
brational scheme. The following are some ex-
perimental, vibrational, and rotational ratios:
Ca"(g, p)Scso, 1.4, 4, 8 8n&/n, '; .Cr"(T, p)Mn'4,

0.4, 2, 4. '7n&/n~"; Fe"(T,P)Co56, 0.6, 1, 2.5n /
n, ." The ratio n&/n can reasonably be expect-
ed to lie between 0.5 and 1. Thus both schemes
predict too large a value of the ratio oz /or+, .
The Q dependence of the (f, P) reaction might have
an important effect in this comparison. It is dif-
ficult to draw definite conclusions from distorted
wave Born approximation calculations because
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the Q values of oT and o'z. „are so different.
However, it is unlikely that Q-dependent effects
would enhance OT „compared with OT. Thus,
the absence of a strong OT transition represents
a failure of both schemes.

(5) The ratios between cross sections for reac-
tions populating levels in different nuclei may al-
so distinguish between the two schemes. In
Cr" "(p, t) and Ca""(t,p), o„(0) /v~„(0) should
be near unity according to the rotational scheme,
and should be near n, /o.', according to the vibra-
tional scheme. The experimental ratios are
0.1(Cr)" and 0.3(Ca)."

(6) See Table l(f). Because of the T(T+1) term,
the comparison of energies favors the lowest or-
der version of the rotational scheme. However,
we have seen that with the correction terms, the
two models become very similar. Since first-or-
der corrections to the vibrational energies are of
the same magnitude as the lowest order energies,
and since the energies of 4 and I' oscillations
are comparable with the rotational energies, it
seems that it is necessary to solve the complete
collective Hamiltonian, as has been done for the
quadrupole force and for the pairing force be-
tween identical particles.
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A simple parametrization of the nonlocal effective field in nuclei is provided. The
parameters as determined by fitting the properties of nuclear matter are quite similar
to those which have been shown to yield good results for the size and binding energies
of finite nuclei throughout the periodic table. It is shown that the self-consistent single-
particle energies are significantly different from the separation energies (rearrange-
ment effect) and consequences for structure calculations and particle knock-out experi-
ments are discussed.

In this work we avoid the introduction of an explicit form for the two-body force and attempt to make
a simple self-consistent parametrization of the effective field in nuclei. We assume that the nonlocal
potential for a single particle in nuclear matter is given by'

„expt-lr-r I/&l 0 1 p
fr-r 'f/a 2 2p,
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