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LOW-FREQUENCY SOUND VELOCITY IN CO2 NEAR THE CRITICAL POINT*
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We have used a standing wave technique to measure the velocity of =1-knz sound
waves in CO& near its critical point along critical and near-critical isochores. The
measurements indicate &he existence of a logarithmic divergence over several decades
in T-T~ for the adiabatic compressibility and the specific heat at constant volume along
the critical isochore.

where V is the specific volume, P is the pres-
sure, and T is the temperature. As the critical
point is approached along the critical isochore,
(BPjBV)T becomes vanishingly small and

lim(T-T ) C, -T(dP/BT) ~'Vv . (3)

Therefore, a logarithmic singularity in C, at the
critical point implies a similar singularity" in

and vice versa. Logarithmic singularities in

zs have been reported by Williamson and Chase"
in He and by Van Dael, Van Itterbeck, and Theon'-
in Ar. We report here sim. ilar results in CO„ for
which previous sound-veiocity measurements" "
as well as calorimetric measurements" of C, do
not allow definite conclusions concerning the
critical exponents of ~, and C,.

To obtain accurate values for ~, and C, from
sound velocity measurements in the critical re-
gion we took the following precautions: (I) Mea-
surements were made Over a reasonably large
range of T T, (2) The t—est .cell was made as

In recent years, calorimetric measurements
by Bagatskii, Voronel', and Gusak, ' Voronel' et
al. ,"Edwards, Lipa, and Buckingham, and
Moldover and Little' have revealed approximate-
ly logarithmic singularities in the specific heat
at constant volume C, at the critica. l points of
Ar, Q„Xe, and He. Such nonclassical behavior
was first predicted by the exact solution to the
two-dimensional Ising model' and is consistent
with recent scaling-law equations of state. ' '

Related data on C, near the critical point may
also be obtained from sound-veLocity measure-
ments. For a single-phase system the low-fre-
quency sound velocity u and the adiabatic com-
pressibility z are related by

1 2&s=& u

where p is the mass density of the fluid. The
specific heat at constant volume C, can then be
calculated from ~s using

short as possible to reduce the effect of gravita-
tionally induced density gradients. (3) Low fre-
quencies were employed to avoid velocity disper-
sion due to relaxation effects. (4) Measurements
were made at constant density to facilitate a
slow and reproducible approach to the critical
point (or the coexistence curve). The test cell,
the sound-wave generating and receiving system,
the pressure control and measurement system,
and the temperature control and measurement
apparatus, all of which were designed with the
above criteria in mind, are described in detai. l
by Feke." The test cell consists of a 4.26-cm-
high cylindrica. l cavity terminated at each end by
a 0.5-in. -diam capacitor microphone. In the res-
onance technique used here requirements (2) a.nd

(3) above are, of course, in conflict. The de-
sired ow frequencies dictate the minimum.
height of the required cavity. The sound velocity
u at a frequency f is obtained from a measure-
ment of the fundamental longitodinal resonance
frequency f of the cavity using

u( f)=2df, (4)

where d is the acoustic length of the cell. In the
region of critical density the resonance frequen-
cy of this cell fell from 2400 Hz at T-T, =10'C
to a minimum of about 1200 Hz at the critical
point. Such frequencies are well below the vibra-
tional relaxation frequencies"'" of CO, Wheth-
er or not the velocities measured at these low
frequencies are affected by other relaxation ef-
fects remains an open question.

When the critical point is approached along an
isotherm, one tries to ch nge the density by
small amounts by varying the pressure. This is
very diffcult because of the extremely large iso-
thermal compressibility of a. fluid near its criti-
cal point. The advantage of approaching the crit-
ical point isochorically is that one may work
with a closed cell which is not distrubed mechan-
ically as the tern"erature is lower d by incre-
mental cooling. In our measurements we fil'ed
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Table I. Measured velocity minima in CO2.

Average
density
{g!cm3)

Velocity
minimum
(m/sec)

Temperature
{'C)

0.45
0.467
0.469
0.469
0.47 .

0.47~
0.470
0.472
0.482

109
110
ill
112
107
114
110
114
108

31.04
31.11
31.06
31.08
31~ 11
31.09
31.08
31.04
31.12

These results were obtained with commercial
grade CO2, the other runs were obtained with research
grade CO, .

the cell at 40'C (9'C above the critical tempera-
ture) to the desired density (+0.001 g/cm') using
a commercial high-precision pressure gauge to
measure the filling pressure. The correspond-
ing density was calculated from PVT data. " The
cell was then sealed and sound-velocity measure-
ments were carried out at the desired tempera-
tures. The absolute temperature was measured
to +0.001 C using a platinum resistance ther-
mometer. In addition, a commercial quartz
thermometer was used to enable us to measure
relative temperature changes of the order of a
few ten-thousandths of a degree.

With average filling densities between 0.45
and 0.48 g/cm, minima in velocity ranging be-
tween 107 and 114 m/sec have been observed at
temperatures between 31.04 and 31.12'C. These
results are shown in Table I. The actual veloci-
ty versus temperature behavior for a density of
0, 467 g/cm' is shown in Fig. 1. Using this and
similar velocity data we have plotted in Fig. 2

the temperature dependence of z~ calculated
from the measured sound velocity at densities
of 0.467 and 0.469 g/cm' (two independent runs
at essentially critical density; p, =0.468 g/cm')
and at 0.482 g/cm'. For the purpose of these
plots T, was taken to be, in each case, the tem-
perature at which the minimum velocity was ob-
served. The graph in Fig. 2 indicates the exis-
tence of a logarithmic singularity in z, as the
critical point is approached along the critical
isochore. This logarithmic behavior seems to
extend from T-T, - 20'C to T-T, -0.02 C. The
behavior for a density of 0.482 gjcma seems to
be logarithmic over a much smaller temperature
range.
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FIG. 1. The velocity of sound in CO& at a density of
0.467 + 0.001 g/cm as a function of temperature in the
one-phase region.
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FIG. 2. The adiabatic compressibility &~ and the
specific heat at constant volume t-"„of CO2 as a func-
tion of T-T~. The solid circles represent the values
calculated from our velocity measurements at critical
density (two separate runs at 0.467 and at 0.469 g/orna).
The small open circles represent the compressibility
for a density of 0.482 g/cm3. The large open circles
indicate the calorimetric specific-heat measurements
of Michels and Strijland. The solid lines show the log-
arithmic behavior of &~ and C~ discussed in the text.

The solid line in Fig. 2 represents a least-
squares fit to the experimental compressibility
at critical density between T-T, =20'C and T-T,
=0.02'C. The equation of this line is

a'~ = -0.5518-1.715 ln[(T T~)/T ~-],

where T, =304.20 K (the generally accepted val-
ue) and a~ is in units of 10 ' cm'/dyn. In the low-
er part of Fig. 2 are presented the values of C,
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calculated from Eq. (2) using our measured ve-
locities on the critical isochore and the data for
(8P/8T) z and (8P/8V) r from Ref. 21. As indicat-
ed, these calculated values of C, are in excel-
lent agreement with the experimental measure-
ments of C, of Michels and Strijland. " Their
anomalously high C, measured at T-T, =0.16'C
is probably due to the relatively large tempera-
ture increments used in their calorimetric tech-
nique. The graph indicates logarithmic behavior
of C, for 0.02'C &T-T, &1 C. The solid line in
the lower part of Fig. 2 represents the least-
squares fit to the calculated C„data in the above
temperature range:

C, = -0.005 014-0.075 101 [n(T-T, )/T, ] (6)

with C, in units of cal/g 'C. The behavior for
1'C&T T, &50-'C is of the form (T-T,)

Figure 2 indicates that the experimental points
begin to deviate from logarithmic behavior for
T-T, less than 0.02'C. In this region, the mea-
sured velocities were higher than one would ex-
pect from a continuation of logarithmic behavior.
This can be understood in terms of gravitational-
ly induced density gradients. " From visual ob-
servations in CO, by Lorentzen" and by Schmidt"
we conclude that close to the critical tempera-
ture the density may vary by 10% over the height
of our test cell. Since our technique effectively
yields the acoustic travel time through the cell,
each of the velocity minima listed in Table I rep-
resents an averaged value of the velocity which
is necessarily higher than the true velocity for
small values of T-T,.

From our velocity measurements we conclude
that in CO„z, shows a logarithmic singularity
for e=(T T)/T~&3x-10 ' and for T&T~ along
the critical isochore. Furthermore, from these
velocity measurements and thermodynamic data
we deduce that C, behaves logarithmically as a
function of T-T, for e & 3 &10 ', although behav-
ior of the form C,- (T T~) ", with n—small but
not zero, cannot be ruled out if the region e & 2

x10 4 is considered separately. We also sug-
gest that low-frequency velocity measurements
provide a way of obtaining meaningful values of
C, in the vicinity of the critical point where pre-
cise calorimetric measurements are ruled out
because they involve measuring an average C,
over some temperature interval.
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In computer-experimental studies of surface vibrations in monatomic crystals, sur-
face modes of a new type have been found near the Brillouin zone boundary in gaps be-
tween bands of different kinds of bulk modes {e.g. , longitudinal and transverse). Other
surface modes, including Hayleigh waves and extra high- or low-frequency modes when
adsorbed films are present, have also been found and investigated.

There have been many studies of surface vibra-
tional modes in elastic continua and simple one-,
two-, and three-dimensional crystal models.
Three basic types of surface modes have been ob-
tained in these calculations: Rayleigh modes, '
optical surface modes in diatomic systems, and
extra high- or low-frequency surface modes pro-
duced by adsorbed atoms or by a macroscopic
layer of one material lying on a substrate of an-
other material.

Here we report what are thought to be the first
studies of surface modes in realistic monatomic
model crystals. ' In addition to Rayleigh modes,
which are present for wave vectors throughout
the two-dimensional Brillouin zone associated
with the surface, other surface modes have been
found which exist only for wave vectors in parts
of the zone, near the zone boundary. These
modes may have frequencies below those of all
the bulk modes (in that part of the Brillouin
zone), or they may fall in a gap' between bands
of different kinds of bulk modes (e.g. , transverse
and longitudinal modes). To our knowledge, no

such modes have been obtained in previous calcu-
lations. '

The present study is part of a program to in-
vestigate surface vibrations in model crystals
whose atoms interact through realistic pair po-
tentials. The method of calculation has been de-
scribed previously' and detailed results of the
present study will be published elsewhere. Here
we describe only the most interesting qualitative
results for the (111)surface of an fcc crystal.

In Fig. 1(a) the frequency versus wave-vector
relations are shown for two symmetry directions
and the edge of the Brillouin zone. The labeling
of the symmetry points is shown in Fig. 1(b). It
can be seen in Fig. 1(a) that the three bulk bands,

which correspond roughly to one longitudinal and
two transverse modes, show gaps in some parts
of the Brillouin zone, near the zone boundary.
In these gaps it is possible for surface modes to
exist, and in fact, such modes are present.
There is one surface mode' (for a given two-di-
mensional wave vector) in the large gap on the
left and another, which is limited to a very small
region near the K point, in the smaller gap on
the right. That these modes are in fact localized
near the surface has been determined by examin-
ing the associated eigenvectors. The eigenvec-
tors also show that these modes correspond to
vibrations primarily parallel to the surface,
whereas the Rayleigh modes are associated with
vibrations primarily perpendicular to the surface.
The results shown in Fig. 1(a) are for a crystal
with surfaces which is 11 layers thick. In Fig.
1(c) the curves along the zone boundary are given
for a crystal 21 layers thick; it can be seen that
the only important effect of increasing the thick-
ness of the crystal is to populate the bulk bands
more densely, and that the surface modes are
virtually unchanged.

In addition to the surface modes in the "band
gaps" mentioned above, there are Rayleigh modes
throughout the Brillouin zone with frequencies ly-
ing beneath all three of the bulk bands, as can be
seen in Figs. 1(a) and 1(c). In a crystal with two

surfaces, there are two such modes which are
nearly degenerate near the edge of the zone but
which split near the origin. '

The case of an adsorbed monolayer of light or
heavy atoms has also been studied. The results
in the case of a very light layer (1:5 mass ratio)
are shown in Fig. 1(d). There are no low-fre-
quency Rayleigh modes at the zone boundary, but
three extra high-frequency surface modes are
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