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CONTINUED FACTORIZATION METHOD FOR UPPER AND LOWER BOUNDS
ON THE DYNAMIC POLARIZABILITY
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A continued factorization method is introduced to establish upper and lower bounds on
the dynamic polarizability of both real and imaginary frequencies. It converges rapidly
and has a wider frequency range of applicability than other methods.

Dynamic polarizability of real frequency is
directly related to the index of refraction and
Verdet constant; dynamic polarizability of imag-
inary frequency is intimately connected with the
dispersion energy. ' Since direct calculation is
difficult, feverish search has been made recent-
ly for the determination of upper and lower
bounds to this quantity. ' '

In this Letter we wish to introduce a continued
factorization method which can be used to estab-
lish the bounds simply and directly. It converges
very rapidly and has a wider frequency range of
applicability than other methods.

The dynamic polarizability n is defined as (in
a.u. )

so-called Cauchy series

n(~) = Z ~~(~')'.
k=o

The first few Cauchy moments p. k can be deter-
mined either experimentally or theoretically. '
Obviously p, , is just the static polarizability.
The convergence of Cauchy series is usually very
poor in the extrapolated region. It is convenient
to define
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where f„ is the oscillator strength for the dipole
transition from the ground state to the excited
state n and e is the associated transition ener-
gy. The summation is understood to include the
integration over the continuum.

Expanding into the power series, we have the

01 ~p
Cl = — ~ E ~ E ~

3 gt ~ i j k~i, j, k=1

etc. , where g means the summation does not in-
clude terms with two identical indices. With
these quantities, we can express the dynamic

!

polarizability n(~) in the form of continued fac-
toriz ation,
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FIG. 1. Dynamic polarizability of real frequency for
the hydrogen atom.

FIG. 2. Dynamic polarizability of imaginary frequen-
cy for the hydrogen atom.

where

(E0 -t1 )(F~ —E0 ) ' ' '(C0 —E~ )

If we terminate the series after the nth term we have the nth order approximation. Thus the first-
order approximation is

~(1)(0))— 1 0f 6
E CO1

and the nth-order approximation is

(0)( )
(n-1) + ( i)0-1 g, 2(n 1)-1

By examining the remainder, we can establish the bounding properties of all orders of approximation.
It can be shown that o. ( )(m) is an upper bound to o.'(&o) in the frequency range e&, & (0 & eq and a lower
bound in the range ~& & w & ~& „„where k =n, n-2, n-4, ~ ~ ~ . All previous bounding methods are limit-
ed to the normal dispersion region (&u & e,) while the present method can give the bounds between the
excitation energies as well. As an illustration we present the o((d) of the hydrogen atom and various
bounds in Fig. 1. As a lower bound, the present method converges much faster than the standard
Padd' method"'; as an upper bound, it is superior to the Reisz-Herglotz-Gronwall-Pade method'' and
converges at about the same rate as the Common-Pads method. '' The lowest-order Common-Padd
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bound requires three Cauchy moments while with the present method the upper bound can be construct-
ed with a single moment (the static polarizability).

For imaginary frequency, we can use the same form of continued factorization of Eq. (4). One can
show, by examining the remainder, that n('(i()L) is a lower bound to e(i&a) for all orders of n. To con-
struct an upper bound with the present method, we can make use of the total number of electrons Z in
the atom. If we define

z, =z+ g a~)LI, „
A=1

we ean show that
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is an upper bound to n(io)) for a.ll n Th. is is because
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which corresponds to the two-point Slater-Kirkwood-Pads inequality. These bounds are illustrated in
Fig. 2 for the hydrogen atom. The convergence rate is about the same as the standard Pads approxi-
mant. To tighten either the upper or the lower bound, the Pads method requires two Cauchy moments
at a time whereas with the present method we need only one Cauchy moment for each step.
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The 2 8 )~2-2 P3/p separation 4E-5 in hydrogen has been measured by a microwave
atomic-beam technique. The result obtained from four independent transitions is 4E-5
=9911.173+0.042 MHz. We combine this result with the recent determination of the
Lamb shift I by Robiscoe to obtain a value for the fine-structure splitting 4E and a value
for the fine-structure constant n '=187.0858(5).

We have measured 4E-S, the splitting between
the states 2 81g2 and 2 P3/2 in atomic hydrogen
(Fig. I). The experiment is modeled on the orig-
inal work of Lamb and eo-workers. ' A beam of
hydrogen atoms is produced with a single hyper-
fine component of the 2'S»2(m&= -2) metastable
level. The beam is subjected to an rf electric
field in a magnetic field of =400 G oriented paral-
lel to the beam axis. Electric dipole transitions

are thereby induced to the b or d levels in the
2'P„, state (see Fig. 1). We have measured four
independent transitions. Table I shows the initial
and final states along with the frequency and mag-
netic field for each.

During a data run, the frequency of the electric
field is held constant to 1 ppm, and the magnetic
field is swept through the resonance line. A typ-
ical experimental resonance is plotted in Fig. 2
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