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two-particle forces, before the physical predic-
tion of three-particle cross sections can be
achieved. Thus the Faddeev equations provide a
dynamical description, but do not provide a
means of separating the exterior from the in-
terior wave function. %e show below that by re-
formulating the problem in configuration space,
it is possible to make such a separation. Be-
cause of the long-range effect described above,
the formalism necessarily requires a complete
description of the wave functions of the isolated
two-particle systems inside the range of the two-
particle forces (half off-shell two-particle t ma-

trix), but still can be made whether or not there
are three-particle forces inside the finite volume
where the force ranges of all three pairs over-
lap. Hence, to the extent that one believes a co-
variant description of the half off-shell two-par-
ticle t matrices (e.g. , via the Blankenbecler-
Sugar' equation), the description could also be
extended to the relativistic case. If the forces
are known in the interior region, the method also
provides nonsingular dynamical equations for the
three-body problem.

The wave function @(r„r2,rs) for three parti-
cles of masses nz„m„m, can be re-expressed
in terms of the new coordinates

R = (m, r, + m2 ra + m, r,)/(m, +m„+m g, xz = [2mz mz /(mz + m z) ]' '(rz -rz),

yz= [2mz(mz+mz)/(m, +m, +m)]"'[ rz+(-mz rz+mzrz)/(mz+mz)],

(i, j, k cyclic on I, 2, 3) and decomposed into Faddeev channels and radial and angular parts accord-
ing to

3 U Jstx )@M zp ~ Rgg Ix (s|ys I M(g y g
s=l 1X +s s

(2)

where P is the total momentum and the FJ1& are the two-direction spherical harmonics as defined by
Blatt and Weisskopf. ' If the interactions are due to central, spin-independent potentials V (i rz-rz, i)
and W (x) = Vz([(ml+mz)/2mjmz, ]'z'xz), the radial wave functions Uzz (x, y) are uniquely' specified for
each value of J (which index we now drop) by the dynamical equations

I(I+ I) ~(~+ I), +,—,—,yz-Wz(xz) Uzz (xz, yz)

pmlll(g, +p. g y p ) 1s S
z ~ ~l .—

I

dy, Q Ax19.' (yz, y, )Uz ~ («osy. , r»ny. )
g =Jp ~i ]"Ss 1'X!

=W (xz)Szz (xz~ Jz)~ (3)

r = (xz'+yz')' ', yz
——tan '—, cos p, z, =

Xj' gm~+ms~irns +ms'g
(s =j, s'=k or s =k, s'= j),

z =ELzB-P /2(m +m +m ).
The geometrical factor coupling in the two other channels is, explicitly,

8m'
~ ~ '(y, y.)=, Z Iz *(h, o, $+4,, o)~~ & ((+4., o, $+C. +k., o),

2J + 1'j—,sin2 p, 1,

with

costi = (cos2pz~ cos2yz-cos2 y ) /sin2pz, sin2yz,

cos fz~ = (sin tzz~ sinyz cos &; cos p z~ cos yz)—/cosy„

cosQ = (cos2 pz sin2yzcos&z+ sin2 p,„cos2yz)/sin2y„

and is independent of the angle ( which x; makes with some arbitrary axis fixed in the plane of the tri-
angle. For the states of zero total and relative angular momentum, K is just Ijsin2pz~ and for three
particles of the same mass, pz~ is w/3.

Since the two-particle forces S' are assumed known, we can construct the Green's function for the
left-hand side of Eq. (3) in terms of product wave functions in x and y, u~z (x)f~(qy), which vanish at
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x = 0 or y = 0 and which we choose to normalize asymptotically to u~ (x)-sin(px+ 5~ —l w/2), fq(qy)
-sin(qy-xm/2) [i.e., f~(qy = qyj „(qy)]. They therefore have the orthonormality properties

(f—+g)dpu "(x)u,"(x') =5(x-x'), —f dqfz(qy) f„(qy') =&(y-y'),

where the symbol (f+g) is written to remind us that if W is strong enough to support bound states at
p=iy, these discrete terms must also be included. Since, when this Green's function is applied to the
source term on the right, we encounter u& (x')W (x'), we can eliminate explicit reference to the po-
tential in favor of the half off-shell t matrix by the relation

up'~(x)W'(x) = ——p exp(-it~) f dk kf, (kx)t, '(k, p; p'),

with

tj (p, p;p') = xp('a~ ) 'ncaa /p-=(p).
If the right-hand side of Eq. (3) were bounded in both x and y, the Green's function solution

( ) X ( ) (f p)dpf d f d f d ."( )f (qy) ."( ')f (qy ')W (,)S
would have the exterior representation

~~a '"'(x, y) =XJ„(x,y)+(f"+L)dqes[(z q')' 'x-]fx(qy)+zz (q)~

e [(z—q')'I x]=i(z —q')'~ 2xki'&[(z-q')'~2x]-expi[(z —q')'~ 2x lm/2],

with

(8)

F~~ (q) = f dk kt[k, (z-q2)'~2; z q2]ff ..-.dx dye(kx) f„(qy)S,~'(x, y). (9)

Clearly, the F~z (q) are simply proportional to the Faddeev T in the JlA. representation, and include
elastic scattering and rearrangement collisions via the discrete terms in the sum. Unfortunately, the
source term, although bounded in x if W (x) has a finite range, falls off only as 1/y for reasons dis-
cussed in the first paragraph and illustrated in Fig. 1.

The key to a separation of Eq. (3) into exterior and interior parts is the observation that the limits
of integration of p~ plus the assumption that 8" vanishes for x &A for all i is sufficient to limit the re-
gion for x~ &8 in which U~~ (x~, y, ) need be known to compute S(x, y) to the finite domain

0&x, &R, 0&y, &(8+x~ cosy', )/sing~~, (10)

while in the contribution coming from x, )A [which lies in the strip bounded by y, = (8+x, cos p~)/
sing& ], it can be computed from the one-variable representation given in Eq. (8). Hence, if we as-
sume the wave function known in this interior region, for example, in terms of some complete set
A~(x, y) over ttus finite domain, i.e.,

Usa (x y) =Xzz (x y) +8(R-x)Qaa + (x y) +~(x-R)(f+Z)dqei[(z-q')"'x]fx(qy)F&x (q).

The E&z (q) can be determined by solving the one-variable integral equation

+i~'(q) =Xi~'(q) +X~~' (q) +Z a Xzx (q)+(f+Z)dp g q»», "(q,p)F, ,„, (p).
sl'V

(12)

If the resolvent for Q(q, p) exists, application to the inhomogeneous term in Eq. (12) immediately
gives T in terms of known functions with coefficients a . These known functions are completely de-
termined by the two-body half off-shell t matrices and the complete set A~(x, y), so the a~ are analog
of phase shifts for the three-particle system. Further, if this exterior representation is used in Eq.
(11) and is reinserted in Eq. (3), we obtain an equation for U~~'(x, y) over the finite domain [Eq. (10)].
If there are three-body forces, these must be explicitly introduced into Eq. (3) at this point. If the in-
terior wave function can be expanded in terms of the same complete set which suffices to represent
the resolvent kernel for Eq. (12), this will give a convergent matrix equation for the a„, but the re-
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guirements which will allow this have not been established. It remains only to show that Q(q, p) falls
off more rapidly than const/(qp)'~' for large q and P. Explicitly,

oo
~ ~

Q, ~,.~"(qi p) =
0 dk kt J'(k, (z -q') '";z q'—)G, ~~ ~~"(k) q, p),

where G is a purely geometrical factor given by
&/2 Pmill(P. + CP„., m —P ~ —cP )

G,„,.~ "(k, q, p) = f, rdr, dy;g~„I ~"~
' " ' dysKin'x' (ys ys)8(rcosy, -R)

xf~(kr cosy&)f~(qr siny;)ez [(z-p')'"r cosy, ]f~i(pr siny, ). (14)

The factor K is a product of spherical harmonics
of angles in the physical range, and so can only
improve the convergence of the integrals and can
be safely ignored. If we perform the k integra-
tion over the off-shell extension of t first, the
fact that this comes from the difference between
the wave function and its asymptotic form' en-
sures that it will be bounded by a factor propor-
tional to I/(k'+P') with P - 1/R, and the integral
of this times kfz(kx) will be bounded by some-
thing proportional to e, which is no surprise
if we look at the left-hand side of Eq. (6). Hence
(ignoring bounded factors), the q dependence will
be determined by t((z-q')'", (z-q')'";z-q'),
which falls off at least as rapidly as const/iq for
large q; [it is also easy to see from other ways
of writing Q(q, P) that there is no difficulty at q'
=z]. Similarly, for large P, the exponential
term becomes exp[-(P'-z)'+r cosy, ], and an as-
ymptotic behavior at least as rapidly decreasing
as const/P is also guaranteed once we note that
r cosy, is bounded from below by R. Hence

Qzz&. z."(p, q) (C/qP, which guarantees the ex-
istence of a resolvent kernel for Eq. (12).

It is also important to note that if we make the
decomposition' t(k, (z q')'~2; z -q2) =r(z -q2)'~'-
x f&z q2)1n(k) in Eqs. (13) and (14), we can inves-
tigate in which kinematic regions the geometri-
cal factor will make the result sensitive to the
off-shell extension f, and where the resolvent
kernels will depend primarily on the on-shell de-
pendence 7(z q')'+ Th-is wil.l determine where
the optimum regions lie for determining the on-
shell factor for unstable systems (e.g. , w-m

phase shifts in ~N -m~N final states), and where
to investigate off-shell behavior for systems in
which the on-shell behavior is known (e.g. , the
three-nucleon system). As developed above, the
analysis is nonrelativistic but since the final
equation depends only on the half off-shell t ma-
trices, the external analysis can be used in rela-
tivistic systems to the extent that one has confi-
dence in covariant definitions of the off-shell ex-
tension of two-particle t matrices (e.g. , via the

Blankenbecler-Sugar' equation). Hence, it can
be immediately applied to problems of overlap-
ping resonances in the Dalitz plot and the deter-
mination of elementary-particle resonance pa-
rameters; note that there is no double counting,
and all relative phases are explicitly given. This
application, and the inclusion of spin, does not
affect the compactness proof given above, but is
obviously too complicated to be developed in a
short article.

I am indebted to L. Castillejo, L. D. Faddeev,
L. P. Kok, and T. Osborn for useful discussions
of some aspects of this problem. These discus-
sions were made possible by the Physics Depart-
ment of the University of Birmingham, who sup-
ported my attendance at their Conference on the
Three-Body Problem in Nuclear and Particle
Physics in July, 1969, and by the Physics De-
partment at the University of Sussex, who sup-
ported my attendance at their Conference on Nu-

clear and Particle Physics in September, 1969.
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