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The saturation of linear or nonlinearly (explosively) unstable high-frequency, electro-
static flute modes in a mirror-confined plasma is discussed. The mechanism proposed
is the perturbation of particle orbits by the wave electric fields.

It has been shown that nonlinear interactions
between positive- and negative-energy waves
may give rise to explosive instabilities, i.e. ,
wave amplitudes which become infinite in a fi-
nite time. ' ~ The question then arises as to what
mechanism will ultimately limit wave growth.

The explosive interaction between a single
triplet of large-amplitude waves which have a
frequency mismatch A~ = ~-„+~-„,+ ~-„„ 0 occurs
only when the initial amplitudes exceed a thresh-
old proportional to ~Ae~. ' Higher-order interac-
tions of the triplet produce amplitude-dependent
shifts in the mode frequencies. If these shifts
become sufficiently large, wave growth will ter-
minate. '

In the case of interactions between waves of a
wide frequency spectrum, frequency shifts will
probably not lead to saturation unless they change
(at high field levels) the dispersion relation from
the decay type to the nondecay type for which the
resonance conditions cannot be met. The oppo-
site case of nonlinear frequency shifts which
lead to the fulfillment of resonance conditions
has been considered by several authors. "

A difficulty in predicting explosive interactions
of many waves and stabilization by higher order
terms arises from the fact that the net growth
rate is the result of a competition between ener-
gy gain in an explosive interaction and the ener-
gy drain due to spreading of wave energy in non-
explosive interactions. This situation prevails
to every order in conventional perturbation theo-
ry, with the number of possible interactions in-
creasing at the same time.

For electrostatic flute modes (k~~=0), which we
shall consider below, it has been shown that the
possibility of interactions between positive- and

negative -ener gy waves is connected with the
loss-cone (non-Maxwellian) nature of the distri-
bution function, and that the crossover from pos-
itive to negative wave energy occurs near multi-
ples of the cyclotron frequency. ' The micro-
scopic nature of these interactions suggests that
the perturbation of particle orbits by the electric
field may ultimately lead to saturation of explo-
sive flute instabilities. To change the nature of
the wave modes, e.g. , from negative to positive
energy presumably requires higher electric
field amplitudes.

A theory for the nonlinear stabilization of high-
frequency, finite-Larmor -radius instabilities by
orbit perturbations has been developed recently
for the case of a broad wave spectrum. ' The
perturbed particle motion is then a Brownian mo-
tion in the random electric field. We wish to ap-
ply this theory to the explosive flute instabilities
of mirror-confined plasmas.

Bursts of radiation observed in mirror ma-
chines are usually correlated with particle ejec-
tion. This is also suggestive of the stabilization
mechanism discussed here, since this mecha-
nism is directly related to a large nonlinear en-
hancement of the diffusion coefficients. It is al-
so conceivable that the enhanced interaction of
the waves with the background plasma may lead
to a relaxation of the plasma, perhaps producing
repetitive bursts of the instability.

The dispersion relation for electrostatic flute

1149



VOI.UME 23, +UMBER 20 PHYSICAL REVIEW LETTERS 17 NovEMBER 1969

modes (~~~ 0) is

a(g, td)=1 g,.s,. (k, ~)=l-g ', Jdv 1-Q J '( )
J m=-~

Expression (I) differs from the corresponding linear expression' only by the resonance broadening
ich arises from the random motion of particles across the magnetic field. 4v& is expressed

in terms of an effective transverse diffusion coefficient D,

Q/2 2 a v a(u-~&+ y-
(2

where F„(x)= «[J„,'(x)+24 '(x)+J„„(x)]and y-„ is the actual nonlinear growth rate which vanishes
when stabilization is achieved.

The broadening results in a nonlinear damping which for small Awed is given by

Bg call 1 ~ ~. 2 kgv~ A(d P v (d

J ' +m= —~ J

If, e.g. , (d), =QJ, then yt-, =(&~&O~); with the ve-
locity average defined by (3).

The actual growth rate is reduced to

y~ —y~ Q y~0

(3)

where yq' is the growth rate resulting from all
other linear or nonlinear processes. In the case
of nonlinear instabilities, yz' depends on the
wave amplitudes, as does 4yz. The saturation
amplitude (yk = 0) may be determined from the
intersection of yk' and 4y~, or y&' and 4y-„ver-
sus amplitude, where Ayk and A&I, are computed
by formally setting yk =0 in (2) (see Fig. 1).

Estimates of the field dependence of y&' have
been given in Ref. 4. The field dependence of
4y& has been discussed in Ref. 8. %Ye see from
(2) that &(3), is zero until the electric field ex-
ceeds a threshold determined by (y),

= 0)

i =,—'*,g)la-„)* g z„('„") '*„,. (5)
m =-~

Because of the rapid increase in the nonlinear
damping when the threshold field level is exceed-
ed, the problem is essentially reduced to the
evaluation of the threshold field level. If this
level turns out to be sufficiently small, then the
mechanism described here is a plausible stabil-

!E),!'/47rnT= (O'A. o') '(I+(d, '/Q, ') '!n), /n!'.

FIG. 1. Nonlinear growth rate yk of explosive insta-
bility and nonlinear damping Ayj, versus electric field
energy (schematic).

ization mechanism.
Following Ref. 4 we consider high-frequency

flute modes for which (0~v~/Q;)» 1» (k~/v, /Q, )
and Q, »~ »0;. Using the dispersion relation
e,,„(k, (d-„) = -(1+~,'/Q, '), the electric field ener-
gy density may be related to the charge-density
perturbations nz by

(7)

Since many harmonics mQ, contribute to (1) and (2) it is convenient to sum the series of Bessel
functions'

e(x, (v)-=—,= — . Z„(x)Z „(x)
J '(x) s 7)

m= —~ P= Q)

With (7) and (8) the threshold condition (5) may be written

(
n, ' ' (Q, '/&u, '+ m, /m;)'

n (H(v, ))
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where (n, ')' =Qk
~

nk'~' and
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(&(v.)&=Zk$k'[@x1 &k-1)+2@xk "k)+@x»~k+1)]

where $k =~ nk ~2/Qk
~

nk~' is the normalized spectrum of density perturbations, &ok = &uk/Qq, and xk=k&v&/

Q . The expressions for b, ~k and hyk may be treated similarly. Equation (9) is valid for any electro-
static flute mode. We can apply Debye's asymptotic expansions for large &u and fixed z =

&u jx to (10) in
view of the dispersion relation which relates cot(v&u) to ~/k~v;.

The threshold density perturbation may thus be estimated as

(n, '/n)'=[(Q;/~;)'+m, /m~]'(I/~~k)k=', (&u/k~v, )»1, Cu» 1, ,

and

(n, '/n)' = [(Q~/~;)'+ m, /m;]'((m[cot'(m&u) + 1]-(~/x)'(1/&u) cot (w P))/x) k ', (12)

for ~/k~vj «1, &u»1. The dispersion relation may be used to express cot(wu&) in terms of e/k, v, be-
fore averaging over the spectrum. From (11), (12), and (7) we obtain approximately [cot'(wP) = 1]

iE'i'/4mnT = (cE/Bv;)'(Qz/&I)'= (Q;/(u;)'(cu/k v, )', cu/k, vi » 1,

= (Q;/(u;)'(2') ', (u/k, v; «1, (13)

where typical numbers, e.g. , ~ /Q =25, x=k~v;/Q;=1, &u/Q;=3, are to be used on the right-hand
side of (13). Stabilization of short-wavelength (negative-energy) modes is seen to occur first.

The decrease of the saturation wave energy with decreasing Q, '/u& and the threshold-like behavior
of the saturation mechanism predicted here have been observed in computer experiments, "although
these were done mostly for a few linearly or nonlinearly unstable waves. " Saturation occurred abrupt-
ly when the electric field reached cE/B - v, , independent of the growth rate [cf. (13)]. The observed
relaxation of the (delta-function) distribution function (velocity spread) is inhibited in a finite-length
mirror machine by the loss of particles scattered into the loss cone. The explosive instabilities
treated in Ref. 4 assumed already a broad distribution function f -v~'exp(-v~'/2v ) for which the plas-
ma is linearly stable with respect to flute modes. " The saturation mechanism discussed here ap-
plies, however, to both linearly and nonlinearly unstable flute modes.
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