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The mobility of ions in liquid Hea is investigated by a method which avoids the assump-
tion that ions recoil freely in collisions with Fermi quasiparticles. The temperature
variation of the mobility is found to be much less than that previously predicted, and
improved agreement with experiment is obtained.

The damping force experienced by an impurity of atomic dimensions moving through a Fermi liquid
(e.g. , ions in He under the influence of an electric field) is mainly due to collisions with quasiparti-
cles if the temperature is sufficiently low. Previous theories of the mobility in this regime' ' involve
a characteristic temperature T,=kF j2MkB (k F, M, and kq are the Fermi momentum of the liquid, the
impurity effective mass, and Boltzmann s constant, respectively, and k=1), at which the mobility tem-
perature dependence is predicted to change from T ' at low temperatures to approximately T' at high-
er temperatures. This prediction is not supported by experiment. 4 With negative ions in He' the mo-
bility at low temperatures (below 2T, in the most favorable ease) is only weakly temperature depen-
dent, while with positive ions the low-temperature behavior (down to —&T,) resembles T "~ rather
than T '. The above theories treat the recoil of the impurity during a collision by ascribing to it a
definite effective mass. In the following, we describe a theory in which the recoil is treated in a more
fundamental manner in terms of the Van Hove scattering function, and the discrepancy between theory
and experiment referred to above is largely resolved.

If the impurity were rigid and fixed in position, all scattering from it would be elastic and governed
by a differential cross section o'(8). (The Fermi velocity is assumed to be large compared with all
other relev"nt velocities, so that only the scattering angle 8. enters. ) In fact the impurity is not fixed
and the scattering is inelastic. We write the inelastic scattering cross section per unit solid angle as
o(8)S„-(K,&u), where K and co are the momentum and energy transfer, respectively, and v is the mean
drift velocity of the impurity (under the influence of a fixed external force). S-„(K,&u) is taken to be the
usual scattering function' which enters into the analogous problem of inelastic neutron scattering, '
and gives the spectrum of the energy absorbed when the impurity is instantaneously giveri momentum
K. With these assumptions, the rate at which momentum is transferred to the quasiparticles has the
form

ffffdQ dedQI dez(kI k;)o(8)Sv-(k; kI, e; eI—)f(e;)~ 1 f(ez)], -—
1T F

where the suffixes i and f appended to the energy and momentum variables refer to the initial and final
states, respectively, of a scattered quasiparticle, f(e) is the equilibrium Fermi factor, and n is the
particle density of the fluid.
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The v dependence of S, is obtained by assuming that the only effect of a fixed external force is to su-
perimpose upon the random motion of the impurity a uniform velocity v. Then by Galilean transform-
ation, S-, (K, ~) =S,(K, co+v K). An expression for the static mobility p, (defined here as velocity/
force) may now be obtained by expanding (1) to first order in v. The result is written first in terms
of the symmetric combination

S,(K, (o) + S,(K, -(u) = (1+e 8 )S,(K, (u)

(from detailed balance), and then in terms of E,(K, t), the Fourier transform of S,(K, &u). In terms of
a dimensionless time variable &=t/P (P=1/kBT), the final result can be written (with K= 2k& sin-, 8)

'=-,'m'nkF 1 d8sin8(l —cos8)o(8)f d~sech'-, 'we F,(K, P~). (2

F,(K, t) is related to the motion of the impurity
over an interval t, being equal to the thermal
average of exp[-iK R(0)]exp[iK R(t)], where R(t)
is the Heisenberg operator for the position of the
impurity at time t.

References 1-3 used a collision approach simi-
lar to the present one but took into account con-
servation of energy during a collision by treating
the impurity as a quasiparticle with a definite en-
ergy-momentum relation governed by an effec-
tive mass M. The present theory takes into ac-
count in a more general way the effect of the sur-
rounding fluid on the recoil of the impurity. To
discuss the relationship between the theories
further, we remark that the previous results can
be obtained as a special case of (1) by using an

S„(K,&u) derived using the effective-mass ap-
proximation. Furthermore, in these theories an
assumption may be made' analogous to that used
here in deriving (2) from (1), regarding the v de-
pendence of the impurity-momentum distribution
function; the mobility expression resulting is a
special case of (2). Avoiding this assumption (as
in Ref. 1) only slightly affects the results ob-
tained. The previous theories are thus in effect
approximations based on using in (2) not the ac-
tual I', but that for an ensemble of free particles
of mass M (with a velocity distribution corre-
sponding to thermal equilibrium at the tempera-
ture concerned).

The important values of r contributing to (2)
are those corresponding to

~ t~ SP. The effective-
mass approximation is therefore inadequate
whenever the average motion of the impurity
through the surrounding fluid over an interval P
is significantly different from that of a free par-
ticle. Using a relaxation time derived from the
experimental mobility and estimated values of
the effective mass, 4 it can be seen that a better
approximation for E is necessary for both posi-
tive and negative ions in Hee whenever the tem-
perature is appreciably less than 0.3'K. The ef-

fects of such a modification will now be consid-
ered.

In the situations of interest the effect of the
surrounding fluid is in general to reduce the
average distance traveled by the impurity in a
time of order P. This has the effect of increas-
ing the real part of I', thus making the mobility
less than that expected from the effective-mass
approximation. In the extreme case where the
distance moved by the impurity in time P is
small compared with an inverse Fermi wave vec-
tor, F(K, t) is approximately unity for

~
t

~
5 P, and

p, becomes equal to (onkF) ', where o =2wfo d8
xsin8(1-cos8)o'(8) is the momentum-transfer
scattering cross section. This situation appears
to be a fair approximation to reality, the ob-
served mobilities at low temperatures being
greater than (onk F)

' (taking for o' the geometri-
cal momentum-transfer cross section wR') by
factors in the range 1.5-2.0.

Egelstaff and Schofield' have shown that the
terms of order K' in F(K, t) are expressible in
terms of the frequency spectrum of the motion of
the particle. The latter can be related in turn to
the frequency-dependent mobility p, (u&) by using
the fluctuation-dissipation theorem. ' This is
sufficient to evaluate I" in a Gaussian approxima-
tion:

F(K, t) = expj--,'K'y(t)),

where

( )
2 "

( )
cosh-'P(u-costs(t='iP)

( )m, &u sinh2 P&u

The limiting form of (4),

y(t) = ' lnsinh —+ln +C ip~ sgnt, (5)-2p, . mt P&u,nP 'w
where C is Euler's constant and v, is defined in
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such a way as to make

lim, l de + p~ ln
Re p(&u) 0

D o n CO c

vanish, is applicable whenever both t and P are
large compared with the inverse of the lowest
frequency at which p, (v) departs significantly
from p, On the assumption that this frequency
is (iL,M) ' (which is =10"sec ' for both positive
and negative ions), (5) is a good approximation
to use in (2) at temperatures below about 0.1'K,
provided that a suitable cutoff is applied to re-
move the divergence at small t.

If p(v) can be considered to be characterized
by the single relaxation time p, ,M, then Eqs. (2)-
(4) form a closed set to be solved self-consis-
tently for the static mobility p, The actual fre-
quency dependence of p, is more complicated.
Nevertheless, these equations can be used to es-
timate an upper limit for the temperature varia-
tion of p, , for the negative ions. Because p,, is
known experimentally to be very weakly tempera-
ture dependent, for fixed ~ most of the tempera-
ture dependence of y(Pv) comes from the explicit
P dependence of the term (2g, /w) in(P&u, /m) in (5).
Hence (8/8 InP)F (K, P7') = -(p~K'/m)F (K, P7') and so
by (2),

(8/8 lnP) p,, ' = -(K')/w,

where (K') is a weighted average of K' [actually
the mean square momentum transfer per colli-
sion, weighted by a factor (1-cos8)]. (K') is ex-
pected to lie between zero and (8/3)k F', which is
the weighted mean for isotropic scattering. The
predicted mobility exponent a = 8 Inp, /8 InT is
thus negative, and its absolute magnitude is at
most (8/3v)p, k „'.

For negative ions, -n is predicted to be less
than 0.1, in contrast to the previous predictions
giving a value =2 at temperatures below T,. In
practice, it appears that in the region where the
experiments have been carried out, terms of or-

der T', neglected in the above, dominate the tem-
perature dependence and change its sign. How-

ever, at sufficiently low temperatures the T'
terms should be unimportant, and the mobility
temperature coefficient should then be negative.
At still lower temperatures (of the order of mi-
crodegrees), a number of assumptions used in
deriving (8) break down, and the ultimate low-
temperature behavior of the mobility may well
be T ' in agreement with Refs. 1-3. For posi-
tive ions the assumptions are already apprecia-
bly violated in the 30- to 1.00-mdeg region. It is
clear, however, that the present theory may
give a basis for understanding the comparatively
weak temperature dependence observed.

In summary, we have shown that the effective-
mass approximation requires modification at low

temperatures, and that better agreement with ex-
periment can be obtained by describing the dy-
namics of the ions in terms of the Van Hove scat-
tering function.

We are grateful to N. F. Mott and P. W. Ander-
son for discussions of this problem and to M. Kuch-
nir for providing details of his experimental re-
sults.
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