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IN BULK TYPE-0 SUPERCONDUCTORSEVIDENCE FOR FLUCTUATION SUPERCONDUCTIVITY IN
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asurements on bulk specimens of very-short-coherence-dxs-
—I su erconducting alloys sugges e pr

h T o ' t h bulksuperconductivity at temp eratures up to at least 2T~, w ere
t ma etic field quenching of fluctua-transition temperature. Apparent magne icsuperconducting ransom io

d u to 50 kG both above and below T~.tion superconductivity is observed up to 5

In the present Letter' we report evidence for
fl t tion superconductivity in bulk' type-II su-
perconductors at temperatures T and app ie
magnetic fields H well outside the (H T) re-alm
usually associated with super conducitvity. Fig-
ure 1 s ows curv1 h urves of reduced electrical resis-
tivity pjt~p'p, vs( )/ t = T/T t-ypical of those mea-

f m neti-sured for many different specimens of magne i-
e t e-II supercon-cally quasireversible, ' extreme ype-

T pproximates (within =5%%uo) the
bulk superconducting transition temperature an
is resently defined as the temperature at which
the steep linear portion of the p~ &~t& curve extrapo-

to = 0 at a measuring current density Jlates to p = a a m
roximates=3 A/cm'. The measured p, value approxima

(wl 1I1 = 0'th' =1'%%u) the normal-state residual resistiv-
.4 The long high-temperature tai s o ig.ityp . e

eak form of1 suggest the persistance of some weak
superconduc ivi y upt 't to temperatures of at least
2T,. For the Ti»Ru, specimen of Fig. 1, the ap-
plication o a mt' f magnetic field H =49 kG at (T,
=3.3 (T (4.2'K (the present upper temperature
limit for magnetic field application) increases

t to about 1.0, consistent with the assump-
tion of a superconductive mechanism or
sistive rounding.

The curves of Fig. 1 and sim' bilar data. to be
published) on about 20 different specimens of

h h h-temperature diminution of t e re
it is an effect common to all the extreme yp-
II superconductors examined an
ity is an e ec co

and is not critically

(J (14 A/cm ~ ig.4 A/ ' (Fig. 1) mechanical surface pol-
' h' surface-to-volume ratio S, , ig. 1,/V, F' . 1, orls ing~ su

i n such as' bl of the specimen preparationvaria es o
. This sug-l' quenching, or cold working. iannea ing,

nductivity isgests that the apparent weak supercondu
'

y
not associate wid th the surface' but is a bulk

of extreme type- II supe rconductors
wh' h

' not markedly influenced y is oc
density, or yit, or b preparation-sensitive' trace
amounts of secondary-phase inclusions or pre-
cipitate s.
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FIG. l. Evidence or'd f fluctuation superconductivity at
~ ~ ~ ~

high p
' h temperatures. e re' h p Th reduced electrical resistivity
(t)/p in zero applied magnetic fiefield except where in-

ed versus t =T/T~ for vs, ri—ous bulk ex-dicated) is plotted versus
treme e-II superconductors. The ong g-
ature tails are attri u e o u'b t d to fluctuation superconductivi-

Here pp xs a me asured approximation to the nor-ty
J is the measuring current den-mal-state resistivity, xs

sity in A/cm, an isd S/V the surface-to-volume ratio
in cm 1 For c aril ' data points are not shown for

V No. l. Except for the Qat-Ti Ru No. 1 or Tivv 5V22 5 o..' ~:.. th",-'-n. h-. .-
o- and three-dimensional theo-diam =1.5 mm. The two- an ree- i

lained ust below Eq. (4 m eretical curves are explain j
2 K were accomp is el h dtext. Measurements above 4.2 K

be and a Cu-to-Au'th adjustable-heat-leak prob
eter as in Ref. 3.(0.07 at.% Fe) thermocouple thermometer

& cm), and (l)0) (A)~values are, re-
spectively: Vep TispCrgp No 1 5 7 46 ~ '84 ge

4 2 100, 57; Ti84Mo&6 No. 4, 4.1, 109, 55;
1 4.6 147, 43; T182Ru8~ 3,3, 14T~7z.5+22, 5 No ~
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Recent theories' of thermodynamic fluctuations
in superconductors based on the Gor'kov' formu-
lation of the Bardeen, Cooper, and Schrieffer
(BCS)' theory or on the time-dependent Ginzburg-
Landau equation' predict that for a three-dimen-
sional" superconductor

aves/v =0 03.7e'/[Ilo (l(o)' '(1nt)' ']
0 03ge 3( T )1/2

(la)

(l$o)' '= [h) okav~/(e') T~)]' '. (2)

For the two-dimensional case of a film of thick-
ness d, theory' predicts

x (@'k ay 0' ') '"(int) '" (11)

where Aof -= (o-v~) is the extra conductivity in
zero H due to fluctuations ("paraconductivity" "),
o (esu) is the normal-state conductivity, '2 l is
the electron mean free path, $, is the BCS' co-
herence distance, (l),)'" is proportional to the
Ginzburg-Landau coherence distance" $G(T &T,)
=0.85(l),)'"/(1-f)'", y is the electronic specific-
heat coefficient, and @0=1.78 is Euler's constant.
Equation (1b) follows from the relationship'

as the maximum T (x) in the system et„
e.g. , Ti„Mo„No. 1: g, =4.2'K, Z', =4.2'K, "
T„=10K. [We take T„to be the temperature of
the peak' in p(t)/p, or, if there is no peak, as
the temperature where p(t)/p, departs from near
linearity with decreasing t.] The inequality T
& T, tends to rule out explanations of the weak
high-temperature superconductivity based only
on macroscopic or statistical" spatial variation
of x over domains of dimension &$G. However,
such x variation might still influence the p(f)/p,
curves especially at low t =1 and in specimens
for which dT, /dx near xa is large.

Figure 2 shows evidence for fluctuation super-
conductivity in high magnetic fields below T, but
well above both the upper critical field B„and
the sheath critical field II,. Considering the up-
per portion of Fig. 2 for Hi J, as H is increased
from zero a J-dependent voltage V~p is first ob-
served in the mixed state (associated with flux
flow), and then in the sheath region between H„
and H, ." Above H, the voltage V(H=H, ) =—V, ~p,
is balanced out with a six-dial microvolt potenti-
ometer, and an =10' increase in amplification al-

l) oe2/v =e'/(16kda lnt), (3)

as at least approximately observed by Glover"
and others in thin films for 1.001&t& 2. For the
case Age/o «1 of present concern,

~me(f)/v =-epe(t)/p = [p -p(f)]/p-
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(4)

Figure 1 shows the theoretical three-demension-
al p(t)/p as given by Eqs. (1b) and (4), utilizing
the measured values of p0=100 pQ cm=p~ (y
= 7500 erg cm "K '),"and T, =4.2 K for Ti«Mo„
No. 1. For comparison, the effect of replacing
(1nt) '" in Eq. (1b) with (1nt) ' as in the two-di-
mensional Eq. (3) is also shown by the curve
marked "two-dimensional. " At t &1.2 the experi-
mental (tp)/p, curve for Ti„Mo„No. 1 is higher
than the theoretical curve. However, this differ-
ence does not necessarily indicate experimental
inconsistency with Eq. (1) since (a) the compari-
son relies on the approximate Eq. (2), and (b) the
experimental values of p(f)/p, are probably up-
per limits to p(f)/p since it is likely that p,

16& Pn.
An important feature of the data of Fig. 1 is

that the observed temperature limits 1' for the
persistence of superconductivity for each binary
alloy A,«,B, of average percentage alloy
concentration xa is always considerably larger
than the temperature T „where T, is defined
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FIG. 2. Evidence for fluctuation superconductivity in
high magnetic fields. The reduced resistive voltage
V(H)/V (left-hand side) or the reduced resistive dif-
ference voltage (V(H) -V~) /V~ =P(right-hand s—ide) for
Ti84Mo&6 No. j. is plotted versus applied magnetic field
H for various measuring current densities J (A/cm2).
Here V~ =-U(H=H~) where H~ is the sheath critical
field. The P vs H characteristics are attributed to the
magnetic-field quenching of fluctuation superconductivi-
ty. IP(HII J, J=300 A/cm2) was measured at T=4.2'K
rather than T =4,0 K.l
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lows an x-y recorder display of a small differ-
ence voltage [J'(H)-V, ] (replotted for clarity in
Fig. 2 as [V(H)-V, ]/V, = [p(H)-p, )j/p, = P)-which
we attribute to the magnetic-field quenching of
superconductive fluctuations in the paraconduc-
tive region ("magnetoparaconductance""). Some-
what similar behavior is observed in the mixed,
sheath, and paraconductive regions for H ij J as
shown in the lower portion of Fig. 2, except that
flux-flow voltage is not observed in the mixed
state, and the sheath effect is enhanced. The
nearly flat P(J= 300 A/cm') curves of Fig. 2 in-
dicate high- J quenching of the weak supercon-
ductivity and show that the ordinary normal-state
magnetoresistance is relatively small in accord
with a rough estimate" based on Kohler's rule.
Log-log plots of dP/dH vs (H-H„) for the curves
of Fig. 2 and similar curves for Ti,4Mo„No. 1
at 0.85-t (0.98, 2.5 ((h =H/H, ) - 21, P«1,
H ii

J'= 30 A/cm', yield superimposed straight
lines which suggest

hfdf (H)/o = -Api /p = K(H-H, ) (5)

where K is independent of t and h, and with scat-
ter in the data such that 0.6 &n & 1.0." Within the
experimental uncertainty of =10% at T = 4.0'K
(Fig. 2) there is no change in m in the present
high-h region for J =3 A/cm2, J =30 A/cm3, or
f roHiiJ, HJ J"

For various extreme type-II superconducting
alloys with T, &4.1 K we have obtained isotherm-
al magnetoparaconductive data' at T &T (4.2 K
and at 0&V (50 kG which are qualitatively simi-
lar to those of Fig. 2 at T &T, and FI &II & 50 kG.
The isofield line determined by the 49-kG points
for Ti»au, is shown in Fig. 1. Magnetic field
saturation of the paraconductance is not observed
even at t =1.3 and 0 = 50 kG.

Further paraconductive measurements on type-
II superconductors are in progress to determine
p accurately in high magnetic fields above 4.2'K
so as to test the quantitative validity of Eq. (1).
The present observations suggest the possibility
of experimental investigation of superconductiv-
ity in domains of temperature and magnetic field
well beyond those heretofore investigated, through
the observation of paraconductivity in bulk short-
coherence-distance superconductors with T,
&15 K.
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NE% EFFECT IN THE ELECTRON-PHONON RESISTIVITY OF DILUTE METAL ALLOYS

M. J. Rice
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(Received 24 July 1969)

The electron-phonon contribution to the resistivity of a dilute metal alloy at low tem-
peratures is drastically different from that of the ideally pure host metal if the conduc-
tion-electron cross section for impurity scattering varies with energy on a scale com-
parable with or less than the Debye energy of the host metal. Experimentally the effect
shouM be of particular importance for magnetic or nearly magnetic transitional impuri-
ties in appropriate nontransitional hosts.

Consider an ideally pure metal A in which is
dissolved a small concentration c of a dissimilar
metal B. Denote by p,p'(T) the electron-phonon
(el-ph) resistivity of the pure metal A at temper-
ature T and by ro(el, ) =w, (eq, c,T) the conduction-
electron relaxation time for elastic scattering
from the B impurities in the dilute binary alloy.
The conduction-electron energy associated with
the momentum state Sk is c j,. In this Letter we
point out that the resistivity which results from
el-ph scattering in the alloy, p,z(T,c), is appre-
ciably different from p, p (T), i.e. ,

[p p(»c) pp'(T) ]/p. p'—(T)»
if, in the region of the Fermi energy e v, 7 0(e k)
varies with e]-, on a scale comparable with or
less than the Debye energy ScuD of the host metal.

In the latter situation the difference p,z(T, c)
-p,p'(T) is a direct consequence of the inelastic-
ity of the el-ph scattering event. For spherical
energy bands coupled to an isotropic acoustic-
phonon field we obtain the simple result

p,p(T, c) = p,p'(T) [1+a']
for temperatures sufficiently low that p, » p,z'(T),
that is, T«TO(c), where p, &o(TD)

—=po. Here po
denotes the impurity resistivity m/ne'7'0(e F),
and

a = R&u F[6 InT, (e I,)/eej, ].
where ~F=skF, s denotes the isotropic sound
velocity, k F the Fermi wave vector, and rn, n,
and e the electronic mass, number density, and
charge, respectively. The quantities a and po
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