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EVIDENCE FOR FLUCTUATION SUPERCONDUCTIVITY IN BULK TYPE-II SUPERCONDUCTORS

R. R. Hake
Science Center, North American Rockwell Corporation, Thousand Oaks, California 91360
(Received 1 August 1969)

Electrical resistivity measurements on bulk specimens of very-short-coherence-dis~
tance [(I¢,)¥2~50 Al type-II superconducting alloys suggest the presence of fluctuation
superconductivity at temperatures up to at least 2T, where T, approximates the bulk
superconducting transition temperature. Apparent magnetic field quenching of fluctua-
tion superconductivity is observed up to 50 kG both above and below T.

In the present Letter' we report evidence for
fluctuation superconductivity in bulk® type-II su-
perconductors at temperatures T and applied
magnetic fields H well outside the (H-T) realm
usually associated with superconducitvity. Fig-
ure 1 shows curves of reduced electrical resis-
tivity p(¢)/p, vs t =T /T typical of those mea-
sured for many different specimens of magneti-
cally quasireversible,® extreme type-II supercon-
ductors. Here T approximates (within =5 %) the
bulk superconducting transition temperature and
is presently defined as the temperature at which
the steep linear portion of the p(¢) curve extrapo-
lates to p=0 at a measuring current density J
=3 A/cm® The measured p, value approximates
(within =1 %) the normal-state residual resistiv-
ity p,.* The long high-temperature tails of Fig.
1 suggest the persistance of some weak form of
superconductivity up to temperatures of at least
2T .. For the Tig,Ru, specimen of Fig. 1, the ap-
plication of a magnetic field H =49 kG at (T,
=3.3)<T <4.2°K (the present upper temperature
limit for magnetic field application) increases
p(t)/p, to about 1.0, consistent with the assump-
tion of a superconductive mechanism for the re-
sistive rounding.

The curves of Fig. 1 and similar data (to be
published) on about 20 different specimens of
Tig,Mo,q, TiV,s, Tig,Fey, and Tig,0s, show that
the high-temperature diminution of the resistiv-
ity is an effect common to all the extreme type-
IT superconductors examined and is not critically
dependent upon measuring current density 3.5
<J <14 A/cm? (Fig. 1), mechanical surface pol-
ishing, surface-to-volume ratio S/V (Fig. 1), or
variables of the specimen preparation such as
annealing, quenching, or cold working. This sug-
gests that the apparent weak superconductivity is
not associated with the surface® but is a bulk
property of extreme type-II superconductors
which is not markedly influenced by dislocation
density, or by preparation-sensitive® trace
amounts of secondary-phase inclusions or pre-
cipitates.
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FIG. 1. Evidence for fluctuation superconductivity at
high temperatures. The reduced electrical resistivity
p(t)/p, in zero applied magnetic field (except where in-
dicated) is plotted versus ¢t =T /T, for various bulk ex-
treme type-II superconductors. The long high-temper-
ature tails are attributed to fluctuation superconductivi-
ty. Here p,is a measured approximation to the nor-
mal-state resistivity, J is the measuring current den-
sity in A/cm?, and S/V is the surface-to-volume ratio
in em™!, For clarity data points are not shown for
TigRug No. 1 or Tigq 5V, 5 No. 1. Except for the flat-
strip specimen Tig,Mo, No. 4, the specimens here are
hemispherically ended cylinders with length ~21 mm,
diam ~1.5 mm. The two- and three-dimensional theo~
retical curves are explained just below Eq. (4) in the
text. Measurements above 4.2°K were accomplished
with an adjustable-heat-leak probe and a Cu-to-Au
(0,07 at.% Fe) thermocouple thermometer as in Ref. 3.
The T, (°K), p, (1 @ cm), and (1£) 12 (R) values are, re-
spectively: Vg TigCry No. 1, 5.7, 46, ~59; TigyMoy,
No, 1, 4.2, 100, 57; TigMo No. 4, 4.1, 109, 55;
Ti77.5V22'5 No. 1, 4.6, 147, 43; TingUg, 3.3, 14:2, ~60,
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Recent theories® of thermodynamic fluctuations
in superconductors based on the Gor’kov’ formu-
lation of the Bardeen, Cooper, and Schrieffer
(BCS)® theory or on the time-dependent Ginzburg-
Landau equation® predict that for a three-dimen-
sional'® superconductor

A0 fy/0,=0.03Te?/[h0,(1E,) /(Int) /2] (1a)
~0.037e3(yT )2
X (B°k gy o0 ,%) T1/%(1nt) "2, (1b)

where Ags =(0—-0,) is the extra conductivity in
zero H due to fluctuations (“paraconductivity”!?),
0, (esu) is the normal-state conductivity,'? [ is
the electron mean free path, £, is the BCS® co-
herence distance, (1£,)'/? is proportional to the
Ginzburg-Landau coherence distance®® £4(T <T.)
~0.85(1&,)'/2/(1-¢#)'2, y is the electronic specific
heat coefficient, and y,=1.78 is Euler’s constant.
Equation (1b) follows from the relationship?

(160" % = [y oeso /(> T ) 2. 2

For the two-dimensional case of a film of thick-
ness d, theory® predicts

Ao, /0, =e%/(16hda , Int), (3)

as at least approximately observed by Glover!*
and others in thin films for 1.001<¢<2. For the
case Aos/0,<<1 of present concern,

Aof(t)/on = —Apf(t)/pn = [pn—p(t)]/pﬂ
=1-p(t)/p . (4)

Figure 1 shows the theoretical three-demension-
al p(t)/p, as given by Eqgs. (1b) and (4), utilizing
the measured values of p, =100 uQ cm=p, (y

=17500 erg cm ~3°K™2) !5 and T, =4.2°K for Tig,Mo,,

No. 1. For comparison, the effect of replacing
(Inf) "*/2 in Eq. (1b) with (In) ™' as in the two-di-
mensional Eq. (3) is also shown by the curve
marked “two-dimensional.” At¢>1.2 the experi-
mental p(¢)/p, curve for Tig,Mo,, No. 1 is higher
than the theoretical curve. However, this differ-
ence does not necessarily indicate experimental
inconsistency with Eq. (1) since (a) the compari-
son relies on the approximate Eq. (2), and (b) the
experimental values of p(¢)/p, are probably up-
per limits to p(¢)/p, since it is likely that p,
<pp.t®

An important feature of the data of Fig. 1 is
that the observed temperature limits 7', for the
persistence of superconductivity for each binary
alloy A, -x2Bxa Of average percentage alloy
concentration xa is always considerably larger
than the temperature T ,,, where T, is defined
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as the maximum 7T .(x) in the system A,,,—,By;
e.g., Tig,Mo,, No. 1: T,.=4.2°K, T, =4.2°K,"7
T,=10°K. [We take T, to be the temperature of
the peak® in p(t)/p, or, if there is no peak, as
the temperature where p(¢)/p, departs from near
linearity with decreasing ¢.] The inequality T,
>T ,, tends to rule out explanations of the weak
high-temperature superconductivity based only
on macroscopic or statistical!® spatial variation
of x over domains of dimension 2{5;. However,
such x variation might still influence the p(t)/p,
curves especially at low £ =1 and in specimens
for which dT . /dx near xa is large.

Figure 2 shows evidence for fluctuation super-
conductivity in high magnetic fields below T . but
well above both the upper critical field H,, and
the sheath critical field H;. Considering the up-
per portion of Fig. 2 for H.1J, as H is increased
from zero a J-dependent voltage V «p is first ob-
served in the mixed state (associated with flux
flow), and then in the sheath region between H,,
and H;." Above H the voltage V(H=H )=V, <p,
is balanced out with a six-dial microvolt potenti-
ometer, and an =10% increase in amplification al-

o
N

V/Vs OR [(V-Vg)/Vg] X 102
) [Ke)

H (kG)

FIG. 2. Evidence for fluctuation superconductivity in
high magnetic fields. The reduced resistive voltage
V(H)/V (left-hand side) or the reduced resistive dif-
ference voltage [V(H)=V]/V¢ =P (right-hand side) for
TigMoe No. 1 is plotted versus applied magnetic field
H for various measuring current densities J (A/cm?),
Here Vg =V(H=H) where H; is the sheath critical
field. The P vs H characteristics are attributed to the
magnetic~field quenching of fluctuation superconductivi-
ty. [PH|J, J=300 A/cm? was measured at T =4.2°K
rather than 7'=4,0°K.]
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lows an x-y recorder display of a small differ-
ence voltage [V(H)-V]{replotted for clarity in
Fig. 2 as [V#H)-V]/Vs=[o#H)-ps)/ps = P} which
we attribute to the magnetic-field quenching of
superconductive fluctuations in the paraconduc-
tive region (“magnetoparaconductance”!!). Some-
what similar behavior is observed in the mixed,
sheath, and paraconductive regions for H || J as
shown in the lower portion of Fig. 2, except that
flux-flow voltage is not observed in the mixed
state, and the sheath effect is enhanced. The
nearly flat P(J=300 A/cm?) curves of Fig. 2 in-
dicate high-J quenching® of the weak supercon-
ductivity and show that the ordinary normal-state
magnetoresistance is relatively small in accord
with a rough estimate?®' based on Kohler’s rule.
Log-log plots of dP/dH vs (H-H ;) for the curves
of Fig. 2 and similar curves for Tiz;,Mo,, No. 1
at 0.85<¢t<0.98, 2.5<(h=H/H_ ) <21, P<1,
H||J=30 A/cm?, yield superimposed straight
lines which suggest

AO’[S(H)/O'”=—Apf3/P”:K(H—H02)—”, (5)

where K is independent of ¢ and 2, and with scat-
ter in the data such that 0.6 <%2<1.0.?* Within the
experimental uncertainty of ~10 % at T =4.0°K
(Fig. 2) there is no change in » in the present
high-% region for J=3 A/cm?, J=30 A/cm?, or
for H||J, HLJ.22

For various extreme type-II superconducting
alloys with T', <4.1°K we have obtained isotherm-
al magnetoparaconductive data' at T, <T <4.2°K
and at 0<A <50 kG which are qualitatively simi-
lar to those of Fig. 2 at T<T. and H; <H <50 kG.
The isofield line determined by the 49-kG points
for Tig,Ru, is shown in Fig. 1. Magnetic field
saturation of the paraconductance is not observed
even at £ =1,3 and H =50 kG.

Further paraconductive measurements on type-
II superconductors are in progress to determine
p, accurately in high magnetic fields above 4.2°K
so as to test the quantitative validity of Eq. (1).
The present observations suggest the possibility
of experimental investigation of superconductiv-
ity in domains of temperature and magnetic field
well beyond those heretofore investigated, through
the observation of paraconductivity in bulk short-
coherence-distance superconductors with T,

2 15°K.
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NEW EFFECT IN THE ELECTRON-PHONON RESISTIVITY OF DILUTE METAL ALLOYS

M. J. Rice
General Electric Research and Development Center, Schenectady, New York 12301
(Received 24 July 1969)

The electron-phonon contribution to the resistivity of a dilute metal alloy at low tem-
peratures is drastically different from that of the ideally pure host metal if the conduc-
tion-electron cross section for impurity scattering varies with energy on a scale com-
parable with or less than the Debye energy of the host metal. Experimentally the effect
should be of particular importance for magnetic or nearly magnetic transitional impuri-

ties in appropriate nontransitional hosts.

Consider an ideally pure metal A in which is
dissolved a small concentration ¢ of a dissimilar
metal B. Denote by p.,%(7) the electron-phonon
(el-ph) resistivity of the pure metal A at temper-
ature T and by 7,(eg) =T,(€%;c,T) the conduction-
electron relaxation time for elastic scattering
from the B impurities in the dilute binary alloy.
The conduction-electron energy associated with
the momentum state #K is €. In this Letter we
point out that the resistivity which results from
el-ph scattering in the alloy, pep(T,c), is appre-
ciably different from p.,(7), i.e.,

[pep(T,c)_pepo(T) ]/pepo(T) > 1’

if, in the region of the Fermi energy €, 7,(€7)
varies with € on a scale comparable with or
less than the Debye energy hiwp of the host metal.
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In the latter situation the difference pep(T,c)
-pep(7) is a direct consequence of the inelastic-
ity of the el-ph scattering event. For spherical
energy bands coupled to an isotropic acoustic-
phonon field we obtain the simple result

peP(T,C)=pep0(T)[l+a2] (1)

for temperatures sufficiently low that p,> pePO(T),
that is, T < T,(c), where p,°(T,) =p,. Here p,
denotes the impurity resistivity m/ne®r(ep),

and

a=hw 1-'[3 1n70(€k)/a€k]ek = €pr (2)

where wp=skyf, s denotes the isotropic sound
velocity, &y the Fermi wave vector, and m, n,
and e the electronic mass, number density, and
charge, respectively. The quantities a and p,



