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We examine the application of a parametric equation of state to several magnetic and
fluid systems near the critical point. An attractively simple form represents the experi-
mental data very closely and this suggests there may be a functional relationship be-
tween the critical exponents and coefficients.

In a recent Letter, ' a parametric representa-
tion of the thermodynamic functions in the neigh-
borhood of a critical point was proposed in terms
of variables ~ and 6I. The parameter r repre-
sents a "distance" from the critical point and 0

a distance around lines of constant r from one
side of the coexistence curve to the other. The
transformation to these variables has the proper-
ty that if the scaling laws' hold then any thermo-
dynamic property 4(r, 8) can be represented as-
ymptotically by r y(8), the index x giving the or-
der of the critical singularity. In a magnetic
system, one has therefore

H=ra h(8), T=rt(8), M=r m(8),

where 7.' is measured from the critical tempera-
ture. The function h(8) must be zero on the criti-
cal isochore and along the coexistence curve and
t(8) is zero along the critical isotherm. It then
follows [see Eqs. (6) and (7) of Ref. I] that the
critical part of the free energy is given by (S is
the difference between the entropy and the criti-
cal entropy)

HM+ TS = r'"""P(0)
1

5+ 1 P(5+ 1)

This transformation with simple functions for
b(0) and t(0) was applied to chromium tribromide'
and it was found that m(0) was very nearly linear
in 19, with a small but significant deviation from
linearity around the value of 8 corresponding to
T= 0.

The purpose of this communication is to show
how by a better choice of parameters the linear-
ity of m(0) may be improved. This optimum
choice of parameters leads to the introduction of
a "linear model" in which h(0), t(0), and m(8)
have attractively simple forms. The equation of
state in this model, apart from scale factors, is
entirely determined by any two of the critical in-

dice s.
We compare the model with experimental data

available for a number of systems and find sur-
prisingly good agreement. In this model the pa-
rameter r has a simple physical interpretation,
and to the extent that the model is obeyed by real
systems it provides a clear insight into the rela-
tionship between various thermodynamic quanti-
ties in the critical region. We examine in detail
some of these relationships predicted by our
model and also compare the results with theoret-
ical calculations for the two- and three-dimen-
sional Ising models.

We now give the arguments that lead us to the
linear model. Using the parametric approach
one chooses two of h(0), t(8), and m(0) and analy-
zes the experimental data to obtain the third
function. The choice of Ref. 1 is

h(8) =a8(1—0'), t(8) = (1-b'8').

The resulting equation of state is then obtained
by analysis of the data to determine the function
m(8). An attractively simple equation would re-
sult if m(8) were a linear function of 8. This is
possible only if the tangent to m(0) at 8= 0 passes
through the point m(1) at 8= 1. For this reason
we chose a =&(b'-1) iC„where the coefficients
B and C, are defined by (see Table I of Ref. 1)

(0M/sH), =C,T ~ (H=O T)0) ~

M=&l TI' (H=o, T«)
In previously applying this transform to our data
we chose b'= 2, as this gave l Tl =r along both
the coexistence curve and the critical isochore.
The resulting m(8) is shown in Fig. 2 of Ref. 3;
m(8) is approximately linear but departs from
linearity around T, (corresponding to 82= —,).

Clearly one may attempt to improve the linear-
ity of m(8) by choosing b so that m(b ') lies on
the straight line between m(0) and m(1). If the
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critical isotherm is given by I Ml =BI &I" t»s
condition requires that

Alternatively one may require that the ratio of
the susceptibilities for H=0 and T 0 is consis-
tent with a linear m(8). This requires

C0 2 1

C, (b -1)~ ' I1—b (I-2P)]' (3)

where (&Mj~H)z = C, I TI & for P=0, T &0.
The left-hand sides of Eqs. (2) and (3) are de-

termined by the experimental data, and the right-
hand sides by the choice of O'. The right-hand
sides of both equations have minimum values
when regarded as functions of b', and both mini-
ma occur when

(4)

Using the criteria of Eqs. (2) and (3) to deter-
mine b' for several systems, we found that the
experimental values for the left-hand sides of
both equations were close to or slightly below
the minimum possible value for the right-hand
sides. This is shown in Table I. When the ex-
perimental coefficients do not satisfy Eqs. (2)
and (3) it is not possible for m(8) to be strictly

linear. However, the best experimental data now
available do not have sufficient accuracy to rule
out a linear m(8). We may regard the value of b'
in Eq. (4) as an optimum value in the following
sense: that it results in an m(8) close to linear,
also that with this value of b' and an assumed
linear m(8) all the thermodynamic quantities take
on simple mathematical forms while the parame-
ter r has a simple physical interpretation.

We now wish to consider the consequences of
a model equation of state, which we call the "lin-
ear model. " In this model, h(8) and t(8) are given
by Eq. (1), b' assumes the value of Eq. (4), and
m(8) =g8.

One of the most interesting features of this
model is that, apart from scale factors, the en-
tire equation of state is determined by two of the
critical exponents. In the linear model the criti-
cal coefficients are determined by the exponents
and we have

~C y 1—2P y
C, P 2P y-1
CP~-' 2P && '8~~» 1 2P

D y(1 —2P) 2P y-1

In addition, one may obtain the ratio of specific

Table I. Comparison of experimental coefficients w'ith predictions of the linear model.

System
aCrBr N' COZ

C C dXe He I3-Brass 3d-Ising e 2d-Ising e

a = 1+ y/I3

0. 368

1. 215

4. 31

0. 375

1, 31

0. 350

l. 26

4. 60

0, 350 0. 359

1. 26 1, Z4

4. 60 4. 45

0. 301

1. Z42

5. 13

0. 312 0. 125

l. 25(1. 31) l. 75

5. 00(5. 2) 15. 0

2 (6-3)
(& —1)(1-ZI3) l. 51 1, 71 l. 48 1.48 1.49 l. Z9 1, 33(l. 39) l. 143

C

C

C B

model

expt.
-1

model

expt.

3. 82

3. 1~0. 9

l. 51

1. 5+. 3

3. 88 4. 23

. 9+1.4 4. 4

1. 65 1.60

l. 4+0. 4 l. 69

4. 23 4. 0

4. 1

1. 60 1, 58

l. 62 1.45

60

37

1. 77 1. 73(1. 92) 9. 65

1. 81, l. 74, 1. 79 6. 85

5. 54 5. 28(5. 63)
5. 46 5. 2Z, 5. 07, 5.17

A

A 0

mOdel

expt.

l. 41

1, 27

l. 29 1. Z8

1. 27 1. 34

Z. 17 l. 96(l. 44) 1. 00
2. 3, 2. 15, 1. 95 1. 00

Ho and Litster, Ref. 3.
Weiss and Forrer, Ref. 5.
Vicentini-Missoni, Sengers, and Green, Ref. 4.
Als-Nielsen, private communication.
Values of B, Co, C& from J. W. Essam and D. L. Hunter, J. Phys. C: Phys. Soc.

(London) Proc. 1, 392 (1968); &~, Ao from M. E. Fisher, Rept. Progr. Phys. 30, 615
(1967); and D from D. S. Gaunt, Proc. Phys. Soc. (London) 92, 150 (1967). The two
values of y are & ~ 0 (see Essam and Hunter).

~For sc, bcc, and fcc lattices, respectively.
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heats in zero field,

4P'1 —2P

A, y 2P y—1

where

CH =AOT " (H= o, T) 0),

(8=o, v &o).

In Table I the experimental values of these ratios
for a number of systems are compared with the
predictions of the model. The agreement is quite
good, although not perfect, and the model ac-
counts, at least in a qualitative manner, for the
variation with P and 5. The agreement appears
best with the gas data as analyzed by Vicentini-
Missoni, Sengers, and Green. 4 In particular the
estimates of the specific-heat ratio must be re-
garded as a success for the model. Agreement
with the susceptibility ratios for CrBr, and Ni'
does not appear especially good, but the experi-
mental values are extrapolated from finite-field
results and are not well known. Because of the
uncertainties in the experimental coefficients the
criteria of Table I do not provide the best experi-
mental test of the linear model. As a second
test we plot in Fig. 1 the experimental m(6t) for
He4 obtained from the data of Roach and Doug-
lass, ' and in Fig. 2 show m(0) for CrBr~. The re-
sulting plot is linear within the scatter of the da-
ta for He', but one can imagine very slight devi-

ations from linearity for CrBr3.
In Table I we also compare our linear model

with theoretical predictions of the Ising model.
Agreement with the three-dimensional model is
quite satisfactory. The predicted susceptibility
ratio for the two-dimensional Ising model is well
outside the limit of accuracy of the numerical es-
timates, and this suggests the linear model in
its present form is not suitable for two-dimen-
sional systems.

It is particularly easy to find the free energy,
entropy, and susceptibility using the linear mod-
el. An interesting result is that the specific heat
at constant M is independent of 6):

ag
(1 2 )

(5—1) (P5 —
p

—1) 8(a„&
(C-3)(2-PS-P)

(8)

In this model then, the physical significance of
the parameter ~ is clear. Since the variable r is
proportional to CM ', curves of constant r cor-
respond to curves of constant C~.

We also obtain a simple expression for the sus-
ceptibility,

X, ='- 1
2 5 —3

a 1-2P

In the region near the critical isotherm we may
eliminate r and 0 from these expressions. So
long as T'[(1—2P)/2P][g/bM]' ~ is small com-
pared with unity (and this is true over a consid-
erable portion of the critical region), the follow-

I.O— ~r
T($

-eYmo+

I.O

0.8— Tc

0.7—

0.6—
m(e)

0.5—

0.4—

0.2—

O. I—

o8
0 O. I 0.2 0.3

) T
~ 5. 1929'K
~ 5.2015

5.2210
5.2647

v 5.3150

0.4 0.5 0.6 0.7
8

T Tc
~ 5. 1097 K
~ 5. 1406

5. 1666
5. 1663

v 5 1793
5. 1795

a 5 1822
5, 1835
5, 1862

I

0.8 0.9 I.O

0.7—

m(e)

0.5--

0.3-

02

O. I--

0 O. I

t
Tc

32.872 K
~ 32.926

32.981
33.034
33. ! 42
33.739

0 35.029
36.730
39.517

I I I

0.2 0.3 0.4 0.5 0.6 0.7 0.8
6

T 'Tc
~ 3! . 925'K
0 32. 106

32.286
32.478

v 32 589
32.637

a 32 655
32.676
32. 709
32.768
32. 822
32. 826

09 l0

FIG. l. A plot of m(~} vs 0 for the data of Roach and
Douglass (Ref. 6}. The solid line is m =1.120.

FIG. 2. A plot of m(&} for CrBr3. The line is m
= 0.980.
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ing simple approximate expressions are obtained:

g 5 —3 (2P)» ( 2bPM 'i
2a b (P5 —P—1) I g

C~ = K(2(l) T+( —
)

These expressions explain the apparent diver-
gences (towards spinodal lines) that have been
observed in finite fields for the susceptibility in
Crar, ' and the specific heat in EuS, without the
need to resort to complex critical temperatures.

There are many unanswered questions about a
metastable region inside the coexistence curve.
We may examine what our model has to say
about the region for

i 0i & l. One might expect a
metastable region inside the coexistence curve
bounded by a spinodal line where the susceptibili-
ty diverges. Since 2P5&3 for all substances we
know, it is clear from Eq. (9) that y does not be-
come infinite inside the coexistence curve. How-
ever an examination of y as a function of temper-
ature along paths of constant M shows that (sy/
BT)~ diverges and that y has a cusp when 8'
= (5—1)/(5 —3). Therefore, in this sense, we have
a limit of stability along a curve

With the classical exponents P= 2, 5 =3, and the
choice of b'= 2 our model correctly reproduces
the metastable region of mean field theory.

The possibility of a linear m(8) has also been
examined by Cooper, Vicentini-Missoni, and
Joseph, ' who concluded that the experimental evi-
dence was not consistent with a linear paramet-
ric equation of state. The authors of Ref. 9 anal-
yzed coefficients obtained from a nonlinear least-
squares computer fit to the experimental data of
an assumed functional form for the equation of
state. They generated their experimental uncer-
tainties from the standard deviations of their
computer fit. In our opinion this procedure over-
estimates the accuracy with which one knows the
experimental coefficients. We suggest that a bet-
ter procedure is to obtain m(8) directly for each
experimental point using the transform of Eq. (1)
and the value of b' in Eq. (4). We have done this
for Roach's data' for He', which are the best
fluid data available. It is clear from Fig. 1 that
m(8) for helium is linear within the scatter of ex-
perimental points, although the authors of Ref. 9
conclude that "the conditions for m(8) to be linear
are violated. ~ for He~. "

The very slight apparent deviations from lin-
earity of m(0) for CrBr, lead us to suspect that
the linear model presented here does not repre-
sent the precise analytic form of the equation of
state. We believe that the correct functions h(0),
t(0), and m(8) are closely approximated by Eqs.
(1) and (4) with m(0) =g8. This approximation sat-
isfactorily describes the experimental data which
are presently available, and leads to an under-
standing of the apparent spinodal lines that have
been observed. " We are also led to the interest-
ing conclusion that there may be some functional
relationship between the critical exponents and
coefficients that is closely approximated by the
linear model. In the absence of deeper theoreti-
cal understanding, it seems worthwhile to apply
the transformation of Eqs. (1) and (4) to experi-
mental data for comparison with the model.

In conclusion, we remark that even if the pre-
cise analytic form of our linear model is not cor-
rect, a parametric equation of state'" in the
critical region has several advantages. It avoids
the use of power series with nonintegral expo-
nents, and indicates the relationship of the vari-
ous thermodynamic quantities to one another
near the critical point when the scaling laws
hold. Moreover, in the parametric form the
scaling laws result from the hypothesis that M(r,
0) is a uniform function of r and 8 in the critical
region [i.e., that is has an asymptotic form
rsm(8)+o(rs) for all 8 in the range —1 to +1].
This replaces the hypothesis of homogeneity in
the usual thermodynamic variables. Expressed
in terms of uniformity it becomes more trans-
parent in what ways departures from scaling be-
havior can arise. For example, if M(r, 8) con-
tained a factor (1+r 8')», then one would have
different divergences in zero field for T 0.

The authors are grateful to Dr. Als-Nielsen for
permission to quote his results prior to publica-
tion, and wish to thank Dr. Matilde Vicentini-
Missoni for the use of her analysis of the helium
data.
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LOW- TEMPERATURE SATURATION OF THE SUPERCONDUCTING PROPERTIES INDUCED
IN SILVER BY THE PROXIMITY EFFECT*

G. Deutscher, t P. Lindenfeld, and S. Wolf t
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(Received 24 September 1969)

Critical-field measurements of silver layers sandwiched between two superconducting
layers indicate that supercooling appears below a temperature T* and that the super-
cooling field stays constant at low temperatures. We propose a simple theoretical model
which correctly predicts the temperature of saturation as well as the observed amount
of supercooling, and leads to an estimate of 0.1 for +Vfor silver. This model further
suggests that a 1/x spatial dependence of the order parameter in the silver should be
observed in the He3 temperature range and below.

The proximity of a superconductor (S) may in-
duce superconductivity in an otherwise normal
metal (N). This effect has previously been stud-
ied by measurements of transition temperature,
tunneling, critical current, and surface imped-
ance. Attempts have been made to deduce from
these experiments the value of the electron-elec-
tron interaction potential V, in particular to de-
termine whether it is positive in N, which would
imply that the normal metal would become an
intrinsic superconductor at some lower temper-
ature. "

The thermal conductivity also leads to informa-
tion about the energy gap and the interaction po-
tential. In contrast to tunneling and critical-cur-
rent measurements, it is sensitive to electrons
traveling parallel to the SN boundary so that one
is not limited by problems associated with the
mismatch across the boundary. We have made
such measurements on PbBi/Ag/PbBi triple
layers. ' In the course of this research it turned
out that a value of V can also be deduced from a
study of the critical fields, and we report here
on this aspect of our work.

The specimens were evaporated onto room-
temperature substrates of No. 00 microscope
cover glass. The thermal conductivity was mea-
sured as a function of magnetic field applied pa-
rallel to the S'NS interface down to a temperature
of 0.3'K. At a field below the lower critical field
II, of the PbBi layers, the thermal conductivity

shows a transition of the silver layer from the
induced superconducting state to the normal state.

The thermal conductance of the substrate was
measured in a separate run so that the conduc-
tance of the specimen could be obtained by sub-
traction. The measurements show that below
1.4'K and below H, the thermal conductance of
the PbBi layers is negligible so that the speci-
men conductance is then entirely that of the sil-
ver in either its normal or its superconducting
state. The normal-state Ag conductivity agrees
with measurements on films of the same thick-
ness without the PbBi layers. This agreement
indicates that interdiffusion does not have any
deleterious effect on our specimens.

In increasing fields the thermal conductivity
of the silver reaches its normal value at some
field II„ in decreasing fields superconductivity
nucleates at a field II . At high temperatures
the two fields are equal, but below a tempera-
ture T~ the two fields separate with H less than
H„ indicating that H is a supercooling field and
that the field transition is of first order. Below
T*, H is proportional to temperature down to a
temperature T, below which it stays constant.

Figure 1 shows the behavior of a film of 2000-
A Ag between two 2000-A layers of PbBi. A sec-
ond specimen of similar composition was mea-
sured at 0.6 K. The fields 8 and H were about
12'g& larger, but the ratio H„/H, (which is used in
the subsequent analysis) was within 3 k of the
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