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In the Veneziano model, at large s and fixed t, the s-channel resonances sum to give
I'(1-e(t))(-s) "(i) and the u-channel resonances sum to I'(j.—a(t))s"(i) ~. Using this fea-
ture, we propose a new interference model for intermediate energies which gives a sig-
nificantly improved fit to the backward n P data, and we make comments on the Schmid
Argand loops.

The Veneziano representation' contains the
very desirable features of direct-channel poles
(narrow resonances), asymptotic Regge-pole be-
havior, and crossing symmetry. As noted by
Veneziano, in his model (for mm-mar), the full
Regge behavior for large s and fixed t

r(1—a(t))(i —e '~~())s "()

originates from two parts. The first term

r(1-a(t))s ('&-'

(la)

(Ib)

comes from the u-channel resonances, and the
se'cond term

r(1- (t))(- )""'-' (1c)

from the s- or direct-channel resonances. If we
generalize this feature of his model, we can
make a number of observations which shed con-
siderable light on the questions of interference
models, 2 Schmid Argand loops, 3 a,nd exchange de-
generacy. 4

(i) Interference models: At large s and fixed t
we have the Regge behavior (la) for the ampli-
tude. At moderate energies, interference mod-
els' have been used extensively to parametrize
the amplitude. These interference models have
used direct-channel resonances interfering with
Regge-pole terms of the form (la). Many papers
have been concerned with the problem of double
counting in this model. ' The opposite approach
has been used by Dikmen' who uses just s-chan-
nel resonances (and no Regge terms) for the
amplitude. Both of these extreme approaches ap-
pear to yield good fits to the data. We observe
that neither of these two models is in agreement
with the Veneziano representation which gives an
interference model (intermediate to these two) in
which s-channel resonances are added to the
Regge form (1b) without the term (1c).' Our
model applied to the backward s p data gives a
significantly improved fit (see Fig. 1) as com-
pared with the calculations of Refs. 2 and 6.

(ii) Schmid Argand loops: Schmid' has per-
formed partial-wave projections of the Regge

r(1-x)r(1-y)Ax, y =
I'(2 —x —y)

(3)

and x=a(s), y= a(t), z=a(u). We assume that
the same trajectory is exchanged in each channel
and that the trajectory is linear [a(s) = ac+ a's]
so that

x+y+z =3a, +a'(s+t+u) =const=c.

We restrict ourselves to the physical s chan-
nel where 1-y )0 and 1-z )0. In this region we
can expand A (x, y) and A(x, z) exactly as a sum of

amplitude (la) and shown that loops in Argand di-
agrams occur. These loops are then identified
as direct-channel resonances. We show, in Fig.
2, that these loops come entirely from the direct-
channel term (1c) and that the "exchange" term
(1b) just adds an almost constant background to
the "resonance" loop.

(iii) Exchange degeneracy: Following Schmid's
argument above, whenever one could have a Reg-
ge-exchange term, one expected to see direct
channel resonances. When none occurred, as in
K'p scattering, one invoked a cancellation due to
two trajectories which were exchange degener-
ate. '~ In the light of our remarks in (ii), we
claim that the use of the full amplitude (la) al-
ready implies the existence of the direct-channel
resonances. If none exists then the Regge term
is of the form (1b)' which does not yield the
Schmid loops. There is no imaginary part of the
amplitude associated with the crossed channel
term (1b). Any imaginary part (for physical s)
must come from the s-channel cut (or s-channel
poles in the Veneziano model). The features of
direct-channel resonances and exchange-degen-
erate trajectories appear as a result of the dy-
namics or symmetries in nature and not mysteri-
ously from Regge behavior.

To illustrate our points we choose the simplest
form of the Veneziano amplitude,

T(x, y, z) =A(x, y)+A(x, z)+A(y, z),

where
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FIG. 2. Argand plot of the amplitude. The solid and
dashed lines refer to the l = 2 partial-wave projections
of Eqs. (12) and (13), respectively. The numbers refer
to the incident laboratory energy of the pion in BeV.
We normalize by setting P(t) = 1, as in Fig. 1 of Ref. 3.

p)~ (~V/c)

FIG. 1. Theoretical curve for the 180' m p elastic-
scattering differential cross section as a function of
laboratory momentum. The following resonances
[with their respective spin-and-parity assignments,
widths (in BeV), and elasticities] are used:

Q(1236), 2, 0.12, 1.0; b, g(1940), +~, 0.21,0.35;

Kg{2420), P ) 0.31,0.167; Eg(2850), ~~~, 0.40, 0.07;

Eg(3230}, $, 0,44, 0.03; N~(1515), 2, 0.115,0.60;

Ny(2190), f, 0.30, 0.18; Ny(2650), P, 0.36, 0.035;

Ny(3030), Q, 0.40, 0.014; Ny(3350), 4P, 0.10, 0.007;

N~{1690), 2, 0.125, 0.60; N (2210), $,0.22, 0.092;

N~ (2610}, P, 0.31,0.025.

Our Regge contribution from the exchange of the 6&
trajectory is of the same form as that of Ref. 2 with-
out the signature factor. The residue, y, is here tak-
en to be 0.06. The experimental points are those of
S. W. Kormanyos et al. , Phys. Rev. 164, 1661 (1967).

poles in x,'
( 1)8(,y)= ( -y)r .(„1),~(2 ), )

8= j.

(-1) 1
A(x, z)=I'(1-z)g.

( )( ( )
. (5)

n=i

If we keep y fixed and let x-~ (letting lmx-~
also so that Stirling's formula can be used), then

A (x, y) - 1 (1-y)(-x)y (6

so that A(x, y) has Regge-like behavior s "("
The t-channel singularities in A(x, y) are con-
tained in the overall factor I'(1-y). Thus the
Regge behavior for large s comes from the sum
over s-channel poles. A similar statement can
be made for A(x, z) for fixed M [see Eq. (10)j.

The term

I'(1-y) I'(1-z)
I'(2-y -z)

has no s-channeI poles since 1-y and 1-z are
both positive in the physical s channel. Since
1-y &0 we can expand A(y, z) as a sum of poles
in z (or y). Then if we hold y fixed and 1st x -~,
we find that the Regge behavior of A(y, z) at large
x comes from the sum over the u-channel poles.

We now write down the asymptotic behavior of
each term individually for the case that y is held
fixed and x-:

A(x, y)-1 (1-y)(-x)~

A(x, z) — . I'(c-y-1)x~" ',sinn -c)
sinmx

A(y, z) —r(1-y)x~-'.

Since we let x -~ in such a way that its complex
part becomes large, the term A (x, z) will be rel-
atively unimportant at large s. Thus the signa-
ture factor ordinarily found in Regge theory is a
result of adding A(x, y), a term containing s-
channel resonances, and A(y, z), a term contain-
ing no s-channel poles. Clearly, there is inter-
ference between the direct-channel resonances
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and a Regge term asymptotically. Instead of pre-
dicting that there is no interference, the Venezi-
ano model gives an explicit method for adding an
interference term to the usual s-channel reso-
nances. By using the Veneziano amplitude we
have a model to tell us how much double counting
was done in the interference model of Barger
and Cline' and how much is left out in the reso-
nance model used by Dikmen. ' For example, in
our simple model we would add up the s-channel
resonances plus a Regge term (1b) without a sig-
nature factor [i.e., we omit the term (—1) I"].
The full Regge amplitude (la) would be built up

asymptotically as a result of the interference be-
tween the resonances (lc) and the crossed chan-
nel Regge term (1b).

In the Barger-Cline model' we hold u fixed. In
this case the important amplitudes are'o (for
large x)

A (x, z) - I'(1-a(u))(-s)

and

A (y, ) - 1 (1— ( ))(-f) "
= r(1—n(u))s"" '.

Then the proper signature factor comes from
adding these two terms. The factor I'(1—o. (u))
contains the u-channel singularities and the as-
ymptotic behavior (—t)"I'I ' comes from the sum
over the t-channel poles. Our interpretation of
the Veneziano model implies that Barger and
Cline should not have included the entire signa-
ture factor in their interference term. The part
involving (-1) '"I should be omitted since it comes
asymptotically from the direct-channel reso-
nances. Following Barger and Cline' we fit the
backward w p data by having the u-channel A~
trajectory interfere with the direct s-channeI
resonances. Using the same s-channel resonanc-
es and our form for the 4z exchange, we obtain
the curve presented in Fig. 1. Our fit has a y'
smaller by a factor of 3 than does the fit present-
ed by Barger and Cline' or that of Dikmene in the
direct-channel resonance model. Our model also
predicts backward ~ P polarization which is sig-
nificantly different from the prediction of Barger
and Cline. These details will be presented in a
futur e publication.

Schmid did a partial-wave analysis of the Reg-
ge amplitude

(s~ ) I'(n) sinra'

where +=0.57+1.08t, E,=0.7 BeV gives a fit to
wN char ge-exchange scattering. Schmid found
that a plot of Re&z vs Im&& revealed counter-
clockwise Ioops in the Argand diagram which one
might be tempted to call resonances. According
to the idea presented here the term e " actual-
ly comes asymptoticalIy from the sum of direct-
channel resonances while the rest comes from
the crossed channel. We show in Fig. 2 that if
we make a partial-wave analysis of

then all of the "resonant" behavior in fact comes
from this term and the remainder of 8 merely
contributes a slowly varying background. Even
though the imaginary parts of B and 8' are iden-
tical it is not immediately obvious that the term
B' should contain all of the resonant behavior.
For example, it is entirely possible that B'
could describe clockwise loops in the Argand di-
agram because of the difference in the real parts
of B and B'. We have the interesting situation in
which the asymptotic form of a sum of resonanc-
es apparently retains some "memory" of the res-
onances and yields resonantlike behavior in the
Ar gand diagram.

We have seen that the direct-channel reso-
nances do not build up asymptotically to give all
of the amplitude, but rather the direct-channel
resonances interfere with the cross-channel Reg-
ge term (1b) so that the correct full Regge ampli-
tude (la) is produced asymptotically. " We use
this result to propose a new interference model
which gives a significantly improved fit to the
backward v P data. Further applications of this
model will be published elsewhere. Our inter-
pretation of the Veneziano amplitude also leads
to some understanding of the Schmid Argand
loops.
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ERRATUM

HIGHLY INELASTIC pp SCATTERING AND ITS
INTERPRETATION. D. Garelick [Phys. Rev.
Letters 22, 674 (1969)].

The right-hand side of Eq. (4) should read

6'0 1
(lab system),

dO,dPs P, 19.2

not

do P, P, (lab system),
3 3 3

and the end of R'ef. 5 should read" ~ ~ a factor of
3, where X~=2.0 GeV'. "

SELECTION RULE FOR NONLEPTONIC HYPER-
ON DECAYS AS A CONSEQUENCE OF DUALITY.
Mahiko Suzuki [Phys. Rev. Letters 22, 1217
(1969)].

The discussions on elimination of meson-pole
transitions and on lack of resonances in the
(SZ ) system are incomplete and misleading.
The conclusion of this Letter is invalid without
additional assumptions.


