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The density decreases with radius as a zero order
Bessel function. When ~&O2/cu2 is just greater than 1
the enhanced emission originates close to the center of
the column and its effect is "diluted" by the nonreso-
nant plasma at larger radii. As ~&p /~2 is increased
the point of origin of the enhanced emission moves to
a larger radius and the dilution is diminished.

~Even though the temperature enhancement is a con-
sequence of metastable reactions, it surprisingly does
not depend strongly on N» or 0~~. The enhancement is
determined not by E(x) but by E(X)/Ii'(x) for the supra. —

thermal electrons [see Eq. (2)] and this ratio is not

strongly dependent on the rate of production of fast
electrons.

Enhancement can also be expected as a result of
coupling between longitudinal and transverse waves at
density inhomogeneities. At the sharp boundary of a
uniform, non-Maxwellian plasma, for example, a cou-
pling exists which is apparently more efficient than
scattering on the ions as has been discussed by F. L.
Hinton, Phys. Fluids 10, 2408 (1967). This theory is
not directly applicable to our experiment, however,
and in any case it cannot explain the observed magni-
tude of the radiation temperature.

~~The suprathermal electrons do, however, influence
the time rate of change of &. Electron heating due to
metastable reactions has been studied previously, for
example by Ingraham and Brown, Rei. 5; J. W. Poukey,
J. B. Gerardo, and M. A. Gusinow, Phys. Rev. 179,
211 (1969).
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A method is described for the complete calculation of electronic energies in crystal-
line solids without approximating overlap, electron-repulsion, or exchange contribu-
tions. The practicality of the method is confirmed by preliminary results, which also
indicate reasons for the considerable success of independent-electron methods.

Although much work has been done on the electronic states of crystalline solids, the overwhelming
majority of the effort has been on independent-electron formulations. Recently there has been increas-
ing interest in making more complete studies, and investigators such as Girifalco have begun to ex-
amine the quantities which would enter all-electron calculations in the Wannier representation. The
present communication sketches an approach which differs from those previously reported in that it
seeks to use the lattice symmetry before attempting integral evaluations. This technique reduces the
number of quantities needed in the theory, and substantially enhances their symmetry. The method
we describe can be generalized to more complex systems, and can serve as a starting point for Har-
tree- Fock and electron correlation theories. We present here only an introductory illustration which
exhibits the essence of our approach.

Consider a simple cubic lattice containing a proton fixed at each lattice point and an equal number
of electrons. Let the Hamiltonian consist only of kinetic energy terms for the electrons and Coulomb-
ic interactions between all charges, and consider a wave function which is an antisymmetrized pro-
duct of doubly-occupied Bloch sums.

Let ~k) denote a Bloch sum of the form

(k) =+J exp(iR RJ)f(r-RJ), (&)

where r is a spatial point, RJ is a lattice point, and g is an atomic orbital. Except when explicitly in-
dicated otherwise, summations are to be over all points of the lattice. For a lattice of N points and
lattice spacing a, the total energy can be written in the form

a 'i" -(ki-2V'ik) ., a '
i

dkdk'P(k, k')
(Qk)

The k integrations are over the occupied part of the first Brillouin zone, and H(k, k ) stands for the
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two-electron matrix element

H(k, k') =&kk'lr, . ——Qlr, -R„I '- —Qlr. -R. I
'+—,Q ii„. 'Ikk'&-z&kk'lr„'Ik'k&.

pv

Here r, and r, refer to spatial coordinates of the two electrons, r»=r, -r„and R&
——R -R&. Equa-

tion (3) is exact except for terms of order less than 1V. All quantities are in atomic units (1 bohr
=0.5292 A, 1 hartree = 27.21 eV).

We now introduce the Bloeh sums, obtaining for (klk)

(klk) =Q exp(ik Rii)Ail(i&, (4)
i,l

where gi stands for g(r-Ri). Equation (4) can be simplified by recognizing that (gilgi& has Fourier in-

tegral representation

&g, i&i&=,
' .Jdp 17(v) I'exp(ip R;i), (5)

(7)

where g is the Fourier transform of g. We now insert Eq. (5) into Eq. (4), performing the summations
with the aid of the lattice orthogonality relation

Qiexp(ip Rii) =(2m/a) Qq5(P-P~), (6)

where the p& are points in the reciprocal lattice (in this problem simple cubic, of cell dimension 2m/

a). The result is

&klk& = (&/a')2 „lq(P „-k)I'.

A parallel discussion for the kinetic energy integral yields

(kl--,'v'Ik&
T(k) =

(pig& 2a3ylg&~(p~-k) IN(Pv-k) I'. (8)

As a preliminary to a complete discussion of H(k, k'), we examine the "Coulomb" term

&kk I'„-'Ikk &= E exp(ik Rii+ik'Ri. .)&s;C, lr.. 'I~i&.,&.

X,J,l, m

The two-electron four-center integrals on the right-hand side of Eq. (9) may also be expressed by

Fourier integral representations, as is done in one of the standard methods for evaluating such inte-

grals. ' The necessary formula is
/

4i4 'Iry2 I(JN.,& =,, l

—.Nil(q)7, ~(-q) exp(iq R;,) (10)

where g»(q) is the Fourier transform of gi*g, in a coordinate system centered at lattice point i In-.
serting Eq. (10) into Eq. (9) and appropriately grouping terms, we obtain

(kk'Ir» 'lkk'&=, —,[Qg;i(q) exp(ik Rii)][+pi„(-q)exp(ik'Ri„)][+ exp(-iq Ri )].2' ~ m 1,J

The first two summations in Eq. (11) are, because of their short-range nature and the crystal symme-

try, actually independent of i and j, and that is why they have been removed from within the $ and j
summations. The sums over i and j can therefore be evaluated according to Eq. (6), leading to

3—
(kk'Ir» 'lkk')=, —Q, [Qfii (q„)exp(ik. R, i)][+pi„,(—q„)exp(ik'Ri„)]. (12)

2m' g q m

The form of g;i(q) insures that the ii, summation in Eq. (12) converges. However, there is a singular-

ity at q&
——0 which can be shown to cancel exactly against corresponding contributions from other terms

of H$, k ), so that we may simply omit q„=0 from the sum. The cancellation indicates the absence of

a net long-range contribution from an electrically neutral crystal.
The I and m summations of Eq. (12) ean be further manipulated in a manner parallel to that used for

1027



VoLUME 23, NUMBER 18 PHYSICAL REVIEW LETTERS 3 NovEMBER 196'9

(k!k). The result is

Q~g&~(q&) exp(ik R;~) = (1/a')g, &fr (p, -q&-k)g(p, —k).

The "Coulomb" term thus contributes to H(k, k') proportionally to

(13)

~(k, k') =—,, Z, 2 P*(p.-q„-k)4(p. -k)ZC*(p~+q„-k')t(p~-k').a' uq X.

q&0

(14)

The attraction and exchange terms of H(k, k') may be treated by methods similar to those used above.
The results are that their noncanceling contributions are, respectively,

(16)

1 "dq
R „, ' =-, l —,exp[—iq (R„-R„)],

V(k) =—,.g - .Zt*(p. -q„-k)0(p. -k),
u p

qp ~0

X(k k') = 3g~ g, [2ZN*(p, -q„-k)4(p. -k')ES*(p&+q„-k')0(px-k).

The remaining term of H(k, k ), containing R&„, warrants additional discussion. The Fourier in-

tegral representation of R» ' is

and its summation over g and v leads with the aid of Eq. (6) to

N 2q—,g exp[-iq (R, -R„))= & 2 E exp[-iq (R, -R„)1-1}
p

1V 2n ' 1 "dq
(18)

The term for q„=0 completes the long-range cancellation and is therefore to be omitted, while the re-
mainder of the right-hand side of Eq. (18), though consisting of a divergent sum and a divergent inte-

gral, converges as a whole to a definite limit.
The cancellation and limiting process encountered in Eq. (18) is by no means inherently quantum

mechanical, as it would also occur in a parallel treatment of classical lattice sums for Madelung en-

ergies. In fact, a good check of the mathematical procedures described herein is provided by the

study of classical Madelung sums. Such sums exhibit cancellations of opposing apparently singular
terms at q„=0 and contain limits such as that of Eq. (18). We have accordingly made an investigation
of Madelung sums, determining the limit of Eq. (18) to have the value -8.913 633(2m/a) for a simple
cubic lattice and verifying that proper values are obtained for various Madelung constants. '

Consolidating the results obtainable by a complete treatment along the lines of the foregoing discus-
slonq we find

$g.)(k'$) 7 ~a
—V(k) —V(k') +J(k, k')- 2X(k, k') (19)

To gain confidence that the above-described
methods are practical, we undertook the evalua-
tion of some sums of each of the types that occur
when g is taken to be a 1s orbital of screening
parameter &. We first looked at the overlap and

kinetic-energy summations. When programmed
straightforwardly, these were found to take, for
a given k, about 20 msec each (five-significant-
figure results on Univac 1108 equipment). The
potential-energy summations were found more
cumbersome, requiring 20 sec for an electron-

! nuclear sum or 30 sec for an electron-repulsion
sum. These evaluation times reflect no savings
resulting from manipulations to more advanta-
geous analytical forms. There are a number of
possible ways of improving the computational ef-
ficiency, and we hope to incorporate them into a
fuller report on this work.

Although the summations we evaluated for this
preliminary strudy are for a relatively unreal-
istic simple cubic hydrogen-atom lattice, the re-
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Table I. Kinetic energies T(k), in hartrees. Values are for the indicat-
ed magnitudes of R in units 2m/a in the symmetry directions 6 (=N00), Z

(=uu0), and A (=uuu),

g = 1.0, a= 1.5 &=1.0, a=2.0

0.00

0.10

0.20

0.30

0.40

0.45

0.50

0.0006

0.0890

0.3570

0.8277

1.6043

2.0965

2.3544

0.0006

0.0890

0.3568

0.8234

1.5690

2.1002

2.7564

0.0006

0.0890

0.3568

0.8224

1.5597

2.0819

2.7390

0.0032

0.0541

0.2106

0.4941

0.9645

1.2394

1.3726

0.0032

0.0541

0.2103

0.4900

0.9485

1.2718

1.6585

0.0032

0.0541

0.2102

0.4890

0.9424

1.2631

1.6585

q = 1.4, a = 1.5 q = 1.4 a = 2.0

0.00 0.0081

0.10 0.0993

0.20 0.3810

0.30 0.8943

0.40 1.7440

0.45 2.2313

0.50 2.4635

0.0081

0.0993

0.3804

0.8865

1.7187

2.3029

2.9963

0.0081

0.0993

0.3802

0.8844

1.7078

2.2888

3.0012

0.0357

0.0933

0.2754

0.6166

1.1495

1.4120

1.5251

0.035?

0.0933

0.2746

0.6110

1.1611
1.5263

1.9314

0.0357

0.0933

0.2743

0.6092

1.1575

1.5295

1.9623

suits nevertheless contain some information of
physical interest. In Table I we give values of

T(k), for k vectors in the three symmetry direc-
tions b, Z, and A (in the notation of Bouckaert,
Smoluehowski, and Wigner'), and for two values
each of g and a. Particularly at low screening
and short lattice spacing, we see that T is very
nearly spherical almost all the way out to k = 2

(in units 2s/a). In a more realistic body-centered
or face-centered lattice, T would be expected to
deviate less from spherical symmetry than in the

present calculation, and besides, the Fermi sur-
face would not be as close to the zone boundary.
Although T is quite spherical, Table I indicates
that the localization of the 1s functions causes T
to deviate substantially from the free-electron
value &k'.

The behavior of typical potential-energy con-
tributions is indicated in Table II, which reports
electron-nuclear contributions V(k) for g =1, a
= 2. We note that V(k) is also quite spherical,
but the most striking aspect of Table II is the
small magnitude of its entries. This is best un-
derstood if we recognize that the canceH, ation of

opposing potential-energy contributions, leading
to the term in Eq. (19) containing —8.913633,
would have no remainder represented by V, J,
or X if the electron density were completely uni-

Table IL Electron-nuclear energy contributions V(k)
zn hartrees, for g 1, a 2. Values are for the xndzcat
ed magnitudes of k in units 2~/a in the symmetry direc-
tions b, (=u00), Z (=uu0), and A (=umu).

0.00
0.10
0.20
0.30
0.40
0.45
0.50

0.0241
0.0296
0.0509
0.1063
0.2344
0.3188
0.3576

0,0241
0.0296
0.0504
0.1015
0.2122
0.2995
0.4050

0.0241
0.0296
0.0503
0.1003
0.2065
0.2906
0.3965

form. ' In other words, -8.913633/za represents
the exact potential energy of a lattice of positive
ions in a uniform negative charge distribution.
The terms V, J; Idescribe corrections due to
the fact that the electron density is not complete-
ly uniform, and therefore may be thought of as
localization energies. The essential message of
Table II is that not only is the localization con-
tribution of the electron-nuclear attraction spher-
ical, but it is also small relative to the total po-
tential energy and to the kinetic energy. What is
true of t/" will be even more true of J and X, as
J and X describe interactions between charges
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both of which are mainly delocalized. This re-
sult points up a key reason for the success of in-
dependent-electron models for solids, namely
that the variable part of the electron-interaction
energy is a very small part of the total interac-
tion energy.

We are happy to acknowledge helpful discus-
sions with Dr. B. G. Dick, Dr. E. H. Hygh,
Dr. G. R. Miller, and Dr. R. Togei.
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We have observed a new interaction mechanism between a sound wave and the nuclear
spin system in a single crystal of aluminum. The coupling is via the oscillating magnet-
ic field induced by the sound wave in the presence of a large applied magnetic field and
the magnetic moment of the nucleus. The experimental results agree with the theoreti-
cal predictions based on this mechanism.

The acoustic excitation of nuclear-spin reso-
nance in metals has been reported unambiguously
in tantalum. ' We have recently observed the nu-
clear acoustic resonance in single crystals of ni-
obium. ' The interaction mechanism for both tan-
talum and niobium is the coupling between the os-
cillating electric field gradient created by the
sound wave and the electric quadrupole moment
of the nucleus. This is indicated by the observa-
tion of the Am = 2 transition as well as the 4m = 1

transition. We report in this Letter the observa-
tion of the acoustic excitation of the ~m = 1 nucle-
ar spin transition in a single crystal of alumi-
num' (at 300 and 77'K) and we present evidence
that the coupling mechanism is the interaction
between the oscillating magnetic field induced by
the sound wave in the presence of a large applied
magnetic field and the magnetic moment of the
nucleus.

According to the mechanism of Alpher and Ru-
bin the sound wave forces a mechanical motion
of the charged particles in a conducting medium.
In the presence of an applied magnetic field these
charges are deflected and a transverse current
is set up, which generates an electromagnetic
field propagating in a metal at the velocity of the

sound wave. The induced fields modify slightly
the velocity' of the sound wave as well as the at-
tenuation. Both effects are proportional to the
square of the applied magnetic field and have
been observed in aluminum.

On the basis of this mechanism, we have calcu-
lated the acoustic attenuation coefficient for the
absorption of energy by the nuclear spin system.
The attenuation coefficient, n„ is defined as &P,/
I p where I, is the incident acoustic power per
unit area and is equal to &pe, 'e', where p is the
density of the metal, v, the velocity of the sound
wave appropriate to shear or longitudinal wave
propagation, and ~ the peak value of the strain. '
P is the power per unit volume absorbed by the
nuclear spin system and is given by

Ã(h v)2
B (21~ 1)PTZ ill/27'P

where N is the number of nuclear spins per unit
volume, v is the frequency of the sound wave,
and 8', , the transition probability per unit time
from the spin state m to the state m'. For mag-
netic dipole coupling, 8'm~, is well known9 and is
proportional to the square of the oscillating mag-
netic field component perpendicula, r to the apped


