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It is found that in many cases electron trapping can have an important effect on ion
waves. Trapping can render the linear stability theory invalid, and the conditions under
which this may occur are discussed. Assuming the trapping process to be the mechan-
ism whereby an unstable plasma reaches a quasistationary turbulent state, we also de-
rive an expression for the saturation energy spectrum.

In this Letter we discuss the effect of electron
trapping on the ion-wave instability in a plasma,
the instability arising because of the presence of
an electron current. Two fundamental questions
are raised: One is whether the stability criterion
derived from the linear theory could be modified
by trapping; the other is whether, even when lin-
ear stability theory does remain valid, the trap-
ping process can act as a mechanism which
brings an unstable plasma to a quasistationary
turbulent state.

All linear theories ' of ion-wave instability
implicitly assume that electron trapping is unim-
portant. This assumption is reasonable only if
we insist that the waves have "very small" am-
plitude. However, in reality there is a natural
lower bound to the amplitude. Fluctuations asso-
ciated with the thermally generated ion oscilla-
tions provide a lower bound for the energy of an
ion wave and so for its amplitude. Restricting
ourselves to thermal ion-wave fluctuations, we
can estimate the bounce frequency of the trapped
electrons in a typical potential trough, the trough
having a certain characteristic width of the order
of the electron Debye length, say. The electron
may be said to be trapped only when the bounce
period is much shorter than the lifetime of the
potential trough (or more precisely, the correla-
tion time of the fluctuating fields of a certain
wave packet). This time is at least of the order

of some typica1. ion-wave period, say ~, '. Evi-
dently when the bounce frequency ~b greatly ex-
ceeds the wave frequency ~, the linear stability
theory can be in error, unless some other mech-
anisms, such as collisions, suppress the trap-
ping process. In fact it is interesting, as we
show later, that the Coulomb collisions can effi-
ciently prevent trapping from taking place.

We now examine the ratio &uzi+, in order to
find under what conditions it exceeds unity. Since
the electron Debye length, A„represents a typi-
cal length scale for the ion oscillations, we are
interested in the most probable potential depth,
y, with width of the order of this characteristic
length. Because, in general, the fluctuation
fields consist of a large number of propagating
modes, the potential y may be estimated in some
average sense. Thus, using the autocorrelation
function, we write

where () denotes the ensemble average. Assum-
ing isotropic fluctuation and using the random
phase approximation, i.e.,

where y~ is the Fourier transform of cp(r), we
can rewrite (1) as

~max

27T2

1020



VOLUME 2$, NUMBER 18 PHYSICAL REVIEW LETTERS 3 NovsMsla 1969

Since the wave energy per ion-wave mode Uj, can
be expressed ass

2 I

Uq
= (ee(k, &u)j

8p ~(d
Q) =4)P

(4)

where e(k, ~) is the dielectric function and &u~ the
ion-wave frequency, expression (3) as a function
of U& takes the form

kUJ, sinks,
k'+ k. ' (5)

where rn and M are the electron and ion mass,
and v, = (T,/M)"'. Thus if we define the small
parameter g = (nA, ') ", it is meaningful to speak
of electron trapping when

g & (m/M)"', (10)

a condition frequently met by many laboratory
plasmas.

We point out that condition (10), by itself, does
not insure that electron trapping takes place.
The reason is that in the preceding discussion
we have neglected the effect of Coulomb colli-
sions which may, in practice, be very efficient
in suppressing the trapping. While we discuss
this point in more detail in a forthcoming paper,
here we state the conclusion. First of all, let v

be a collision frequency which may be expressed
in terms of the parameter g as v= nu, lg lngl
(o.' is a coefficient of order unity and &u, is the
electron plasma frequency); then when in the

In deriving (5) we have used the approximate re-
sult

9

(d = MP

for k' & k, ', with k, '= A., '. Though relation (6) is
accurate only in the region k'& k, ' it suffices for
an order -of -magnitude analysis. Choosing k,„
=k, and remembering that'

&e~ k +ke~

=0, k&k,
we find from (5)

(8)

If we now define the trapping velocity v, and
bounce frequency ~g, as

v, -=(2eg/m)"' and u&& —= v, /A. ,
we obtain

g, »g» (m/M)'~', (13)

trapping is important and the instability predicted
by the linear theory may not even occur since
trapping can "quench" Landau growth. Second, if
the parameter g is such that g & (m/M)' ' and g
»g„collisions suppress trapping by thermal
fluctuations and the usual ion-wave instability
may exist. However, once the fluctuations have
grown to a certain level, trapping may set in and
serve as a "saturation" mechanism and deter-
mine the quasistationary turbulent energy spec-
trum. This leads us to a new theory of ion-wave
turbulence quite different f rom the previous theo-
ries, "which favor the quasilinear and mode-
coupling interactions. In our opinion, however,
there are many cases where trapping can be
more important than these mechanisms.

Returning to our discussion, we consider the
case g &(m/M)' '

and g&g, and remark, as we
demonstrate in a, forthcoming publication, that
then the usual quasilinear process is, in fact, un-
important or even meaningless. Restricting our-
selves now to the trapping regime, we see that
the saturation level of the wave energy is deter-
mined by the condition

v(v~/V~) —Ops.

The difference between (11) and (f4) is that in
(11) v, and uq are estimated for fluctuations at

quasi-one-dimensional case the condition

(d~ = (V, /V, )'V

is satisfied, the effects of trapping and collisions
become competitive. We now want to examine
the validity of the linear stability theory for a
current-carrying plasma. For this purpose we
should note that in such a plasma the long-wave-
length component of the ion-wave fluctuation is
strongly enhanced even when the plasma is ap-
proaching instability. For such a plasma, we
should choose the characteristic length of the
ion-wave potential, l say, to be greater than A,
Taking this into account, we find that condition
(11) can now be written in terms of g as

lg. »g, I
= X(k, f),

where y(k, l) is a function which is of order unity
for l-k, ', decreasing as l increases, and where

g, represents a certain "critical" value of g, de-
fined so that when g is much smaller than g, col-
lisions cannot destroy trapping.

We may now draw two conclusions: First, if
the plasma is in a state such that
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(lpb, l') =ks9 s dip'(l) coskl.
0 0

(18)

Substituting (15) into (18) we obtain for l, s «k'

k
—cs /s

Uu = 4' & I e ul'& ~, s(k)

To obtain the frequency spectrum, U, we inte-
grate over all possible directions of k for fixed
k and get

U (d

From this we see that the wave energy piles up
in the low-frequency region. Physically, this is
what we expect, since the longer the wavelength,
the longer is the time required for a complete
trapped-particle oscillation and hence the greater
is the possibility that trapping is disrupted by a
collision. Thus, the longer the wavelength, the
greater is the saturation value of the wave ampli-

the thermal level and in (14) i~, and Rb are de-
fined for the saturation level. Since A. , no longer
represents a typical length scale, we should con-
sider v, =v, (l) and orb= aib(l). We note that 0, is
proportional to p' ' and aib(l) =v, (l)/l. Thus from
the saturation condition (14), we see that P must
be proportional to l' ~, since V, M~=V e'v which
is independent of l. Furthermore, since the very
long-wavelength modes of the fluctuations cannot
grow (collisional damping prevails over the weak
Landau growth), we expect the saturation poten-
tial $(l) to drop very rapidly when l exceeds
some upper-bound value, say l,. Hence we spec-
ulate that ~ti(f) behaves like

Q(l) =Als/s exp( —I/I, ),

where A. is a coefficient independent of l. In or-
der to determine the energy spectrum we should
also introduce an angular cutoff in the k integral
since only those modes with wave vector nearly
parallel to the electron current can grow. In the
following we introduce this cutoff by simply writ-
ing

&lq kl'& =(le/, I'& f» o- () -0.(k) «I,
=0 for e, (k) &9.

Noting the relation

e'"' (ly-ls)dk
(2it )s

dk,k'(), '(k)(l y/, l') coskl
0

we find by Fourier inversion

tude.
One can also evaluate the maximum amplitude

of the wave from (14). We find

(k I )is/s( 1 )4/s

e 0

From this we see that the saturation level is low-
er the smaller the parameter g provided g & (m/
M)' s. This is in contrast to what obtains for sat-
uration by the mode-coupling process.
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